The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
The trophic status assessment of lakes in different lake regions may provide important and fundamental information for lake trophic state classification and eutrophication control. In this study, a region-specific lak...The trophic status assessment of lakes in different lake regions may provide important and fundamental information for lake trophic state classification and eutrophication control. In this study, a region-specific lake eutrophication assessment standard was established through a frequency distribution method based on chlorophyll-a concentration. The assessment standards under the oligotrophic state for lakes in the Eastern plain, Yungui Plateau, Northeast Plain and Mountain Mongolia-Xinjiang regions are total phosphorus of 0.068, 0.005, 0.011, 0.005 mg/L; total nitrogen of 1.00, 0.16, 0.37, 0.60 mg/L; Secchi depth of 0.60, 8.00, 1.55, 3.00 m; and CODMn of 2.24, 1.00, 5.1 l, 4.00 mg/L, respectively. Moreover, a region-specific comprehensive trophic level index was developed to provide an understandable assessment method for the public. The results indicated that the frequency distribution analysis based on chlorophyll-a combined with trophic level index provided a useful metric for the assessment of the lake trophic status. In addition, the difference of eutrophication assessment standards in different lake regions was analyzed, which suggested that the sensitivities of algae to nutrients and the assessment standard of trophic status possessed significant regional differences for the four lake ecoregions. Lake eutrophication assessment standards would contribute to maximizing the effectiveness of future management strategies, to control and minimize lake eutrophication problems.展开更多
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
基金supported by the Mega-projects of Science Research for Water Environment Improvement (No.2009ZX07106-0012012ZX07101-002)+1 种基金the National Natural Science Foundation of China (No.40901248)the China Environmental Public Welfare Program (No.2010009032)
文摘The trophic status assessment of lakes in different lake regions may provide important and fundamental information for lake trophic state classification and eutrophication control. In this study, a region-specific lake eutrophication assessment standard was established through a frequency distribution method based on chlorophyll-a concentration. The assessment standards under the oligotrophic state for lakes in the Eastern plain, Yungui Plateau, Northeast Plain and Mountain Mongolia-Xinjiang regions are total phosphorus of 0.068, 0.005, 0.011, 0.005 mg/L; total nitrogen of 1.00, 0.16, 0.37, 0.60 mg/L; Secchi depth of 0.60, 8.00, 1.55, 3.00 m; and CODMn of 2.24, 1.00, 5.1 l, 4.00 mg/L, respectively. Moreover, a region-specific comprehensive trophic level index was developed to provide an understandable assessment method for the public. The results indicated that the frequency distribution analysis based on chlorophyll-a combined with trophic level index provided a useful metric for the assessment of the lake trophic status. In addition, the difference of eutrophication assessment standards in different lake regions was analyzed, which suggested that the sensitivities of algae to nutrients and the assessment standard of trophic status possessed significant regional differences for the four lake ecoregions. Lake eutrophication assessment standards would contribute to maximizing the effectiveness of future management strategies, to control and minimize lake eutrophication problems.