Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow...Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic (SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper. From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27% respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.展开更多
Shales in deep lake basins have become the main focus of continental shale oil and gas exploration.In order to highlight the sedimentary dynamics of mud deposition in deep lake basins,a combination of core observation...Shales in deep lake basins have become the main focus of continental shale oil and gas exploration.In order to highlight the sedimentary dynamics of mud deposition in deep lake basins,a combination of core observation,thin section examination,X-ray diffraction,and QEMSCAN(quantitative evaluation of minerals by scanning electron microscopy)was used to analyze the depositional characteristics of mudrocks in the Chang-7 Member from the Yanchang Formation(Upper Triassic)in Ordos Basin,and to establish a depositional model for mud accumulation in deep lake basins.This study recognizes four mudrock lithofacies in the Chang-7 Member:(1)the laminated silt-bearing mudstone,which generally develops a binary composition of“silt-clay”or a ternary composition of“silt-clay-organic matter”;(2)the graded mudstone,mainly composed of dark gray and gray-black mudstone sandwiched by silt-bearing mudstone;(3)the massive mudstone,internally showing a uniform distribution of quartz,clay,and carbonate minerals,with also a small amount of organic detritus;and(4)the laminated shale,which is generally composed of clay laminae,and organic laminae of the former two.Sediment supply,topographic slope,and flood intensity combine to control the evolution of gravity flows and the transport and deposition of the mudrock in the Chang-7 Member.The influence of orogeny provides terrain gradient,water depth,abundant sediments at source areas,and triggering mechanism for the formation of gravity flows.Floods triggered by wetting events provide the impetus for sediment transport.Mud deposition in the Chang-7 Member was mainly related to the transport and sedimentation of mud by hyperpycnal flows and rapid sedimentation by buoyant plume flocculation.A comprehensive evolutionary model for shale accumulation in the deep lake basin is established by integrating various triggering mechanisms and mud transport sedimentary processes.展开更多
This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models. The modeling of lake ecological processes began to gain importance in the early 1960...This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models. The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification, oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.展开更多
Several research studies have proven that eliciting and predicting the impact of human activity on ecosystem services will be crucial to support stakeholders’ awareness and to decide how to interact with the environm...Several research studies have proven that eliciting and predicting the impact of human activity on ecosystem services will be crucial to support stakeholders’ awareness and to decide how to interact with the environment in a more sustainable manner. In this sense, the ecosystems known as road verges are particularly important because of their length and surface at an international scale, and their role in mitigating the damage done by roads. Plant pollination by insects is one of the most important ecosystem services. Because of its nature and the fact that they extend across a variety of landscapes, roadside can contribute to the maintenance of healthy ecosystems, under the condition of adapted management practices. This research is the first attempt to develop a System Dynamics-based aiming to estimate the ecological and economic impact of maintenance on the road verge pollination service in France. Maintenance strategies of road verges are simulated to compare their performance. The results show that there are ways to improve current maintenance strategies in terms of pollination value, but also that the model needs to consider other ecosystem services and synergistic effects that could further affect pollination to obtain more accurate estimations.展开更多
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are establishe...Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.展开更多
Evaluating the resilience of the innovation ecosystem to maintain its performance,in the sense of resistance to disruption and recovery after it,has recently received more attention.Several studies have been conducted...Evaluating the resilience of the innovation ecosystem to maintain its performance,in the sense of resistance to disruption and recovery after it,has recently received more attention.Several studies have been conducted to model different ecosystems and evaluate their resilience.However,modeling the innovation ecosystem from a holistic perspective and performing a quantitative assessment of its resilience have received less attention.This paper models the innovation ecosystem holistically and evaluates its resilience index using a quantitative approach through five main steps.In the first step,a case study related to the innovation ecosystem of Iran's Ministry of Energy,called the Power Innovation Ecosystem,is modeled by combining system dynamics and agent-based modeling.Upon validating the model in the second step,the disruption of the loss of experts is investigated in the third step,and all possible actions to recover each actor are analyzed.In the fourth step,the performance of the ecosystem is simulated before and after the disruption using the data gathered in the previous steps.Finally,resilience is calculated in two different ways in the fifth step.Several improvement solutions are also suggested when considering that the resilience index of the innovation ecosystem is at a medium level.This research may assist policymakers in observing the resilience level of the innovation ecosystem based on the proposed model.By applying strategic changes to this model,they can determine the effects of their policies and make the most appropriate decisions to increase the resilience of the innovation ecosystem.展开更多
The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This p...The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.展开更多
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a...Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs...探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs)模型生态系统服务水质净化模块,基于2000年、2010年和2020年土地利用数据,模拟流域在未来自然发展情景和生态保护情景下的用地类型时空格局变化以及水质净化特征。定量揭示土地利用变化与水质净化功能的响应关系。结果表明:“两湖一库”流域土地类型以耕地为主,2030年在自然发展情景下耕地、林地、草地面积呈下降趋势,建设用地呈上升趋势,生态保护情景可有效保护流域耕地、林地等空间分布和面积;“两湖一库”流域TN、TP输出量以低强度输出为主,2000—2020年TN输出量先增加后减少,TP输出量逐年增加,水质净化能力呈稳中变好的趋势;2030年自然发展情境下TN输出量持续减少,TP输出量呈向上浮动,生态保护情景下TN、TP输出量较自然发展情景下减少,生态保护情景可以增加水质净化能力。生态用地类型可以有效截留N、P进入水体,生态保护情景下有效降低生态用地类型的变化速度,减少TN、TP的输出量,“两湖一库”流域未来规划中应增加生态用地的占比,增加土地类型对TN、TP的截留能力。展开更多
Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was cou...Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was coupled with the hydrodynamics governing equations. An improvement on the Water Quality Analysis Simulation Program (WASP, a modeling system intro- duced by the US Environmental Protection Agency) is established, which uses the zooplankton kinetic equation. The model simulates water quality constituents associated with eutrophication in the lake, including phytoplankton, zooplankton, nitrogen, phosphorus, dissolved oxygen, and others. Various kinetic coefficients were calibrated using measured data or information from relevant literature, to study eutrophication in the lake. The values calculated by the calibrated model agree well with field data, including ammonia nitrogen, total nitrogen, total phosphorus and dissolved oxygen. Changes related to nutrition and dissolved oxygen during the processes were simulated. The present model describes the temporal variation of water quality in Baiyangdian Lake with reasonable accuracy. Deviations between model-simulated and observed values are discussed. As an ideal tool for environmental management of the lake, this model can be used to predict its water quality, and be used in research to examine the eutrophication process.展开更多
基金The Hi-Tech Research and Development Program(863) of China(No. 2002AA601021) the National Basic Research Program(973) ofChina(No. 2005CB724205) Xichang Government, Sichuan Province
文摘Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic (SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper. From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27% respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.
基金co-funded by the National Natural Science Foundation of China (Grant No.42372141and Grant No.42072126)Open Fund (DGERA20241002)of Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources,Chengdu University of Technology。
文摘Shales in deep lake basins have become the main focus of continental shale oil and gas exploration.In order to highlight the sedimentary dynamics of mud deposition in deep lake basins,a combination of core observation,thin section examination,X-ray diffraction,and QEMSCAN(quantitative evaluation of minerals by scanning electron microscopy)was used to analyze the depositional characteristics of mudrocks in the Chang-7 Member from the Yanchang Formation(Upper Triassic)in Ordos Basin,and to establish a depositional model for mud accumulation in deep lake basins.This study recognizes four mudrock lithofacies in the Chang-7 Member:(1)the laminated silt-bearing mudstone,which generally develops a binary composition of“silt-clay”or a ternary composition of“silt-clay-organic matter”;(2)the graded mudstone,mainly composed of dark gray and gray-black mudstone sandwiched by silt-bearing mudstone;(3)the massive mudstone,internally showing a uniform distribution of quartz,clay,and carbonate minerals,with also a small amount of organic detritus;and(4)the laminated shale,which is generally composed of clay laminae,and organic laminae of the former two.Sediment supply,topographic slope,and flood intensity combine to control the evolution of gravity flows and the transport and deposition of the mudrock in the Chang-7 Member.The influence of orogeny provides terrain gradient,water depth,abundant sediments at source areas,and triggering mechanism for the formation of gravity flows.Floods triggered by wetting events provide the impetus for sediment transport.Mud deposition in the Chang-7 Member was mainly related to the transport and sedimentation of mud by hyperpycnal flows and rapid sedimentation by buoyant plume flocculation.A comprehensive evolutionary model for shale accumulation in the deep lake basin is established by integrating various triggering mechanisms and mud transport sedimentary processes.
文摘This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models. The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification, oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.
文摘Several research studies have proven that eliciting and predicting the impact of human activity on ecosystem services will be crucial to support stakeholders’ awareness and to decide how to interact with the environment in a more sustainable manner. In this sense, the ecosystems known as road verges are particularly important because of their length and surface at an international scale, and their role in mitigating the damage done by roads. Plant pollination by insects is one of the most important ecosystem services. Because of its nature and the fact that they extend across a variety of landscapes, roadside can contribute to the maintenance of healthy ecosystems, under the condition of adapted management practices. This research is the first attempt to develop a System Dynamics-based aiming to estimate the ecological and economic impact of maintenance on the road verge pollination service in France. Maintenance strategies of road verges are simulated to compare their performance. The results show that there are ways to improve current maintenance strategies in terms of pollination value, but also that the model needs to consider other ecosystem services and synergistic effects that could further affect pollination to obtain more accurate estimations.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428703)Oceanic Science Fund for Young Scholar of SOA (Nos. 2010225, 2010118)+1 种基金Public Science and Technology Research Funds Projects of Ocean of China (Nos. 201005008, 201005009)Open Fund of MOIDAT (No. 201011)
文摘Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
文摘Evaluating the resilience of the innovation ecosystem to maintain its performance,in the sense of resistance to disruption and recovery after it,has recently received more attention.Several studies have been conducted to model different ecosystems and evaluate their resilience.However,modeling the innovation ecosystem from a holistic perspective and performing a quantitative assessment of its resilience have received less attention.This paper models the innovation ecosystem holistically and evaluates its resilience index using a quantitative approach through five main steps.In the first step,a case study related to the innovation ecosystem of Iran's Ministry of Energy,called the Power Innovation Ecosystem,is modeled by combining system dynamics and agent-based modeling.Upon validating the model in the second step,the disruption of the loss of experts is investigated in the third step,and all possible actions to recover each actor are analyzed.In the fourth step,the performance of the ecosystem is simulated before and after the disruption using the data gathered in the previous steps.Finally,resilience is calculated in two different ways in the fifth step.Several improvement solutions are also suggested when considering that the resilience index of the innovation ecosystem is at a medium level.This research may assist policymakers in observing the resilience level of the innovation ecosystem based on the proposed model.By applying strategic changes to this model,they can determine the effects of their policies and make the most appropriate decisions to increase the resilience of the innovation ecosystem.
基金supported by the CAS (Chinese Academy of Sciences) Action Plan for West Development Project "Watershed Allied Telemetry Experimental Research (WATER)"(grant number:KZCX2-XB2-09)the Global Change Research Program of China (2010CB951403)+2 种基金WP6 of FP7 topic ENV.2007.4.1.4.2 "Improving observing systems for water resource management"the National Natural Science Foundation of China (grant number:41071227)the Major Research Plan "Integrated Research on the Eco-Hydrological Process of Heihe Basin" of National Natural Science Foundation of China,topic (grant number:91025001)
文摘The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.
基金supported by The Technology Innovation Team(Tianshan Innovation Team),Innovative Team for Efficient Utilization of Water Resources in Arid Regions(2022TSYCTD0001)the National Natural Science Foundation of China(42171269)the Xinjiang Academician Workstation Cooperative Research Project(2020.B-001).
文摘Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
文摘探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs)模型生态系统服务水质净化模块,基于2000年、2010年和2020年土地利用数据,模拟流域在未来自然发展情景和生态保护情景下的用地类型时空格局变化以及水质净化特征。定量揭示土地利用变化与水质净化功能的响应关系。结果表明:“两湖一库”流域土地类型以耕地为主,2030年在自然发展情景下耕地、林地、草地面积呈下降趋势,建设用地呈上升趋势,生态保护情景可有效保护流域耕地、林地等空间分布和面积;“两湖一库”流域TN、TP输出量以低强度输出为主,2000—2020年TN输出量先增加后减少,TP输出量逐年增加,水质净化能力呈稳中变好的趋势;2030年自然发展情境下TN输出量持续减少,TP输出量呈向上浮动,生态保护情景下TN、TP输出量较自然发展情景下减少,生态保护情景可以增加水质净化能力。生态用地类型可以有效截留N、P进入水体,生态保护情景下有效降低生态用地类型的变化速度,减少TN、TP的输出量,“两湖一库”流域未来规划中应增加生态用地的占比,增加土地类型对TN、TP的截留能力。
文摘Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was coupled with the hydrodynamics governing equations. An improvement on the Water Quality Analysis Simulation Program (WASP, a modeling system intro- duced by the US Environmental Protection Agency) is established, which uses the zooplankton kinetic equation. The model simulates water quality constituents associated with eutrophication in the lake, including phytoplankton, zooplankton, nitrogen, phosphorus, dissolved oxygen, and others. Various kinetic coefficients were calibrated using measured data or information from relevant literature, to study eutrophication in the lake. The values calculated by the calibrated model agree well with field data, including ammonia nitrogen, total nitrogen, total phosphorus and dissolved oxygen. Changes related to nutrition and dissolved oxygen during the processes were simulated. The present model describes the temporal variation of water quality in Baiyangdian Lake with reasonable accuracy. Deviations between model-simulated and observed values are discussed. As an ideal tool for environmental management of the lake, this model can be used to predict its water quality, and be used in research to examine the eutrophication process.