Objective The lake levels in the eastern and southern Asia are regarded as low lake-level owing to precipitation decreasing based on the records of lake-level fluctuation in the continental interior lakes since the la...Objective The lake levels in the eastern and southern Asia are regarded as low lake-level owing to precipitation decreasing based on the records of lake-level fluctuation in the continental interior lakes since the last glacial maximum(LGM)(14C 18±1 kaBP,since 20 kaBP)in the Central Asia.Higher lake-level appeared in the transition belt between western Kunlun Mountain and the central Tibetan Plateau.展开更多
Stable isotopic compositions (δ18O and 6D) have been utilized as a useful indicator for evaluating the current and historical climatic and environmental changes. Therefore, it is vital to understand the relationshi...Stable isotopic compositions (δ18O and 6D) have been utilized as a useful indicator for evaluating the current and historical climatic and environmental changes. Therefore, it is vital to understand the relationship be- tween the stable isotopic contents in lake water and the variations of lake level, particularly in Lake Qinghai, China. In this study, we analyzed the variations of isotope compositions (δ18O, 6D and d-excess) in lake water and pre- cipitation by using the samples that were collected from Lake Qinghai region during the period from 2009 to 2012. The results showed that the average isotopic contents of δ18O and 6D in lake water were higher than those in pre- cipitation, which were contrary to the variations of d-excess. The linear regression correlations between δ18O and 6D in lake water and precipitation showed that the local evaporative line (LEL) in lake water (δD=5.88δ18O-2.41) deviated significantly from the local meteoric water line (LMWL)in precipitation (δD=8.26δ18O+16.91), indicating that evaporative enrichment had a significant impact on isotopic contents in lake water. Moreover, we also quanti- fied the Eli ratio (evaporation-to-input ratio) in Lake Qinghai based on the lake water isotopic enrichment model derived from the Rayleigh equation. The changes of E/I ratios (ranging from 0.29 to 0.36 between 2009 and 2012) clearly revealed the shifts of lake levels in Lake Qinghai in recent years. The average E/I ratio of 0.40 reflected that water budget in Lake Qinghai was positive, and consistent with the rising lake levels and the increasing lake areas in many lakes of the Tibetan Plateau. These findings provide some evidences for studying the hydrological balance or water budget by using δ18O values of lake sedimentary materials and contribute to the reconstruction of paleo- lake water level and paleoclimate from an isotopic enrichment model in Lake Qinghai.展开更多
青藏高原藏南谷地中部的玛不错湖位于印度夏季风和西风影响区内,对气候变化响应敏感。不同年份相同时相的遥感影像反映了湖面的变化特征,是探究区域气候变化的重要对象。湖岸堤和湖成阶地沉积物记录了湖面水位变化的历史,可帮助认识区...青藏高原藏南谷地中部的玛不错湖位于印度夏季风和西风影响区内,对气候变化响应敏感。不同年份相同时相的遥感影像反映了湖面的变化特征,是探究区域气候变化的重要对象。湖岸堤和湖成阶地沉积物记录了湖面水位变化的历史,可帮助认识区域古气候的变化和定量重建湖面波动。本文运用ArcGIS遥感解译、AMS ^( 14)C测年和DEM等方法确定玛不错北岸湖岸堤的高程和湖岸阶地的年代,结合湖成阶地剖面的沉积序列指示的湖面变化过程,重建晚更新世以来玛不错湖面的变化过程。S_(7)-S_(4)湖岸堤阶段,14256~13984 a BP之前,玛不错与其南侧的嘎拉错、多庆错为一体,是一个统一的大湖。S_(7)→S_(4),湖平面总体上呈逐渐下降的趋势,玛不错与多庆错、嘎拉错先后分离形成独立湖泊。S_(4)→S_(3)阶段,湖面逐渐上涨,分离的玛不错与嘎拉错重新连为一体,但这个过程持续时间比较短暂。S_(3)-S_(1)阶段,14256~13984 a BP之后,玛不错成为一个独立的湖泊。S_(3)→S_(1)阶段,湖面整体上呈逐渐下降的趋势。综合来看,晚更新世以来玛不错湖面经历了高→低→高→低的变化过程,湖面升降变化主要受区域大气降水和冰川融水的控制,反映了印度季风的强弱变化和全球气候的变化。近十年来遥感解译的湖面变化显示,玛不错2013-2015年期间呈萎缩状态,2016-2018年期间呈扩张状态,反映近年来青藏高原藏南谷地中部的气候有向暖湿化发展的趋势。该认识对于全球气候变暖背景下青藏高原气候环境变化趋势研究领域提供了新的参考。展开更多
Many lakes exist in southeastern Badain Jaran Desert and its hinterland, including 110 perennial lakes and some seasonal or extinct lakes. Geomorphological, sedimentological, and bioglyph evidence obtained from field ...Many lakes exist in southeastern Badain Jaran Desert and its hinterland, including 110 perennial lakes and some seasonal or extinct lakes. Geomorphological, sedimentological, and bioglyph evidence obtained from field investigations on Badain Jaran Desert lake group, alongside measurements and dating performed on lake relic, prove that these lakes expanded while the climate was relatively wet during early and middle Holocene. The dating results suggest that the pan-lake period of the Badain Jaran Desert began at 10 cal kyr BP, before which the limnic peat period occurred(11–10 cal kyr BP). Many lakes reached their maximal water-level during 8.6–6.3 cal kyr BP and retreated or dried up in the late Holocene(about 3.5–0 cal kyr BP). During that period, the precipitation at Badain Jaran Desert may have reached 200 mm yr^(-1) for 7.7–5.3 cal kyr BP, inferred from both the age and precipitation rate of calcareous root tubes. The water balance calculation shows that wetter and warmer climate and the increase of underground water recharge were key factors in maintaining and developing the lake group at both centennial and millennial time scales. Furthermore, lake surface expansion and the increasing fresh water availability set the background for the prosperous prehistoric culture.展开更多
基金financially supported by the National Science Foundation of China(grant No.41571177)
文摘Objective The lake levels in the eastern and southern Asia are regarded as low lake-level owing to precipitation decreasing based on the records of lake-level fluctuation in the continental interior lakes since the last glacial maximum(LGM)(14C 18±1 kaBP,since 20 kaBP)in the Central Asia.Higher lake-level appeared in the transition belt between western Kunlun Mountain and the central Tibetan Plateau.
基金financially supported by the National Natural Science Foundation of China (41130640, 91425301, 41321001, 41401057)the projects from the State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University
文摘Stable isotopic compositions (δ18O and 6D) have been utilized as a useful indicator for evaluating the current and historical climatic and environmental changes. Therefore, it is vital to understand the relationship be- tween the stable isotopic contents in lake water and the variations of lake level, particularly in Lake Qinghai, China. In this study, we analyzed the variations of isotope compositions (δ18O, 6D and d-excess) in lake water and pre- cipitation by using the samples that were collected from Lake Qinghai region during the period from 2009 to 2012. The results showed that the average isotopic contents of δ18O and 6D in lake water were higher than those in pre- cipitation, which were contrary to the variations of d-excess. The linear regression correlations between δ18O and 6D in lake water and precipitation showed that the local evaporative line (LEL) in lake water (δD=5.88δ18O-2.41) deviated significantly from the local meteoric water line (LMWL)in precipitation (δD=8.26δ18O+16.91), indicating that evaporative enrichment had a significant impact on isotopic contents in lake water. Moreover, we also quanti- fied the Eli ratio (evaporation-to-input ratio) in Lake Qinghai based on the lake water isotopic enrichment model derived from the Rayleigh equation. The changes of E/I ratios (ranging from 0.29 to 0.36 between 2009 and 2012) clearly revealed the shifts of lake levels in Lake Qinghai in recent years. The average E/I ratio of 0.40 reflected that water budget in Lake Qinghai was positive, and consistent with the rising lake levels and the increasing lake areas in many lakes of the Tibetan Plateau. These findings provide some evidences for studying the hydrological balance or water budget by using δ18O values of lake sedimentary materials and contribute to the reconstruction of paleo- lake water level and paleoclimate from an isotopic enrichment model in Lake Qinghai.
文摘青藏高原藏南谷地中部的玛不错湖位于印度夏季风和西风影响区内,对气候变化响应敏感。不同年份相同时相的遥感影像反映了湖面的变化特征,是探究区域气候变化的重要对象。湖岸堤和湖成阶地沉积物记录了湖面水位变化的历史,可帮助认识区域古气候的变化和定量重建湖面波动。本文运用ArcGIS遥感解译、AMS ^( 14)C测年和DEM等方法确定玛不错北岸湖岸堤的高程和湖岸阶地的年代,结合湖成阶地剖面的沉积序列指示的湖面变化过程,重建晚更新世以来玛不错湖面的变化过程。S_(7)-S_(4)湖岸堤阶段,14256~13984 a BP之前,玛不错与其南侧的嘎拉错、多庆错为一体,是一个统一的大湖。S_(7)→S_(4),湖平面总体上呈逐渐下降的趋势,玛不错与多庆错、嘎拉错先后分离形成独立湖泊。S_(4)→S_(3)阶段,湖面逐渐上涨,分离的玛不错与嘎拉错重新连为一体,但这个过程持续时间比较短暂。S_(3)-S_(1)阶段,14256~13984 a BP之后,玛不错成为一个独立的湖泊。S_(3)→S_(1)阶段,湖面整体上呈逐渐下降的趋势。综合来看,晚更新世以来玛不错湖面经历了高→低→高→低的变化过程,湖面升降变化主要受区域大气降水和冰川融水的控制,反映了印度季风的强弱变化和全球气候的变化。近十年来遥感解译的湖面变化显示,玛不错2013-2015年期间呈萎缩状态,2016-2018年期间呈扩张状态,反映近年来青藏高原藏南谷地中部的气候有向暖湿化发展的趋势。该认识对于全球气候变暖背景下青藏高原气候环境变化趋势研究领域提供了新的参考。
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371114 & 41530745)
文摘Many lakes exist in southeastern Badain Jaran Desert and its hinterland, including 110 perennial lakes and some seasonal or extinct lakes. Geomorphological, sedimentological, and bioglyph evidence obtained from field investigations on Badain Jaran Desert lake group, alongside measurements and dating performed on lake relic, prove that these lakes expanded while the climate was relatively wet during early and middle Holocene. The dating results suggest that the pan-lake period of the Badain Jaran Desert began at 10 cal kyr BP, before which the limnic peat period occurred(11–10 cal kyr BP). Many lakes reached their maximal water-level during 8.6–6.3 cal kyr BP and retreated or dried up in the late Holocene(about 3.5–0 cal kyr BP). During that period, the precipitation at Badain Jaran Desert may have reached 200 mm yr^(-1) for 7.7–5.3 cal kyr BP, inferred from both the age and precipitation rate of calcareous root tubes. The water balance calculation shows that wetter and warmer climate and the increase of underground water recharge were key factors in maintaining and developing the lake group at both centennial and millennial time scales. Furthermore, lake surface expansion and the increasing fresh water availability set the background for the prosperous prehistoric culture.