The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat condu...The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.展开更多
In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is u...In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is unknown, a study of mathematics based on the theory of Green’s functions in the unsteady state was developed. The complexity of the geometry has led us to develop a numerical study that allows us to obtain results that reflect the importance of heat exchange. The applications are numerous, especially in the storage of energy in the soil to optimize greenhouses according to the cycle of the seasons.展开更多
文摘The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.
文摘In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is unknown, a study of mathematics based on the theory of Green’s functions in the unsteady state was developed. The complexity of the geometry has led us to develop a numerical study that allows us to obtain results that reflect the importance of heat exchange. The applications are numerous, especially in the storage of energy in the soil to optimize greenhouses according to the cycle of the seasons.