期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Some theoretical comparisons of refined Ritz vectors and Ritz vectors 被引量:1
1
作者 JIA Zhongxiao 《Science China Mathematics》 SCIE 2004年第z1期222-233,共12页
Refined projection methods proposed by the author have received attention internationally. We are concerned with a conventional projection method and its refined counterpart for computing approximations to a simple ei... Refined projection methods proposed by the author have received attention internationally. We are concerned with a conventional projection method and its refined counterpart for computing approximations to a simple eigenpair (λ, x) of a large matrix A. Given a subspace ω that contains an approximation to x, these two methods compute approximations (μ,x) and μ,x) to (λ,x), respectively. We establish three results. First, the refined eigenvector approximation or simply the refined Ritz vector x is unique as the deviation of x from ω approaches zero if A is simple. Second, in terms of residual norm of the refined approximate eigenpair (μ, x), we derive lower and upper bounds for the sine of the angle between the Ritz vector x and the refined eigenvector approximation x, and we prove that x≠x unless x = x. Third, we establish relationships between the residual norm ||AX -μx|| of the conventional methods and the residual norm ||Ax -μx|| of the refined methods, and we show that the latter is always smaller than the former if (μ, x) is not an exact eigenpair of A, indicating that the refined projection method is superior to the corresponding conventional counterpart. 展开更多
关键词 large matrix CONVENTIONAL projection refined projection eigenvalue eigenvector ritz value ritz vector refined ritz vector.
原文传递
求解广义特征值问题的多重Ritz向量法 被引量:9
2
作者 黄吉锋 《力学学报》 EI CSCD 北大核心 1999年第5期585-595,共11页
借鉴子空间迭代法,将求解广义特征值问题的单个初向量的Ritz向量法(下称为单R法)推广为多重Ritz向量法吓称为多R法);从而解决了单R法在处理重频结构时的漏频问题;且分析指出,奇异的矩阵M将导致一个数值不稳定的Gram-SchmidtM-... 借鉴子空间迭代法,将求解广义特征值问题的单个初向量的Ritz向量法(下称为单R法)推广为多重Ritz向量法吓称为多R法);从而解决了单R法在处理重频结构时的漏频问题;且分析指出,奇异的矩阵M将导致一个数值不稳定的Gram-SchmidtM-正交化过程,从而使Ritz向量法导致错误振型.为此提出了解决方案.单R法经上述修正,兼备了高效与可靠两个特点.目前该法已在特殊多高层分析程序ETS5中实现,取得了良好效果. 展开更多
关键词 子空间迭代法 多重ritz向量法 多重特征值
下载PDF
一类特殊子空间上调和Ritz对的性质及应用
3
作者 牛大田 《大连民族学院学报》 CAS 2010年第5期443-445,共3页
讨论了增广矩阵在一类特殊子空间上的调和Ritz对的一些性质,并且结合Lanczos双对角化过程,研究了如何可靠且有效地计算部分最小的近似奇异值、近似奇异向量以及精化调和位移等问题。
关键词 增广矩阵 奇异值 奇异向量 子空间 调和ritz lanczos双对角化过程 位移
下载PDF
精化双正交Lanczos方法 被引量:2
4
作者 王耀卫 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期866-870,共5页
根据精化投影方法的思想对经典的双正交Lanczos方法进行改进,提出了精化双正交Lanczos方法,即把非对称矩阵A的投影矩阵Tm构造成另一个三对角矩阵Tm,理论上T m与Tm具有相同的特征值,而且TTm=Tm,并用矩阵Tm的特征值作为A的特征值的近似,... 根据精化投影方法的思想对经典的双正交Lanczos方法进行改进,提出了精化双正交Lanczos方法,即把非对称矩阵A的投影矩阵Tm构造成另一个三对角矩阵Tm,理论上T m与Tm具有相同的特征值,而且TTm=Tm,并用矩阵Tm的特征值作为A的特征值的近似,进一步用A的左、右精化向量分别近似矩阵A的左、右特征向量.在计算过程中,Tm的特征值很容易得到,而且由它可计算高精度近似特征值.理论表明这种方法在计算大规模非对称特征问题方面比双正交Lanczos方法更为优越. 展开更多
关键词 双正交lanczos过程 ritz ritz向量 精化双正交lanczos算法
下载PDF
Lanczos迭代有限终止的条件和性质
5
作者 王丽 《南通工学院学报》 2000年第1期48-49,共2页
在Lanczos迭代过程中,如果出现 βj=0,求解特征值问题会变得十分有利,本文从理论上分析了出现有限终止 βj=0的充分条件。
关键词 lanczos迭代 特征值 实对称矩阵 有限终止
下载PDF
解大规模反对称矩阵内部特征问题的广义调和Lanczos方法
6
作者 黄金伟 《宁德师专学报(自然科学版)》 2006年第2期113-116,共4页
利用广义Lanczos算法,提出一种计算反对称矩阵内部特征值的广义调和Lanczos方法.这种方法只需要简单的三项递推关系式就可以将大规模特征问题转化为一个中小规模广义特征问题求解,因此计算量和存储量都很小.
关键词 反对称阵 广义lanczos过程 调和ritz 调和ritz向量
下载PDF
A QUASI-REFINED ITERATIVE ALGORITHM BASED ON THE LANCZOS BIORTHOGONALIZATION PROCEDURE FOR LARGE EIGENPROBLEMS
7
作者 吴钢 冯丽红 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2004年第1期50-63,共14页
The two-sided Lanczos method is popular for computing a few selected eigentriplets of large non-Hermitian matrices. However, it has been revealed that the Ritz vectors gained by this method may not converge even if th... The two-sided Lanczos method is popular for computing a few selected eigentriplets of large non-Hermitian matrices. However, it has been revealed that the Ritz vectors gained by this method may not converge even if the subspaces are good enough and the associated eigenvalues converge. In order to remedy this drawback, a novel method is proposed which is based on the refined strategy, the quasi-refined idea and the Lanczos biothogonalization procedure, the resulting algorithm is presented. The relationship between the new method and the classical oblique projection technique is also established. We report some numerical experiments and compare the new algorithm with the conventional one, the results show that the former is often more powerful than the latter. 展开更多
关键词 半加密里兹矢量 里兹值 KRYLOV子空间 倾斜预测 非哈密顿本征问题 lanczos双正交化
下载PDF
一类特殊类型子空间上Ritz对的性质及其应用
8
作者 贾仲孝 牛大田 《数值计算与计算机应用》 CSCD 北大核心 2003年第4期257-261,共5页
§1.引言 设A∈RM×N,定义增广矩阵 (A~)=(O A AT O),(1) 其中上标T表示转置.不失一般性,假设M≥N,设σi,i=1,2,…,N是A的奇异值,ui和ui分别是对应的左右奇异向量,奇异值按从小到大或从大到小的顺序排列,则A的特征值恰好为±... §1.引言 设A∈RM×N,定义增广矩阵 (A~)=(O A AT O),(1) 其中上标T表示转置.不失一般性,假设M≥N,设σi,i=1,2,…,N是A的奇异值,ui和ui分别是对应的左右奇异向量,奇异值按从小到大或从大到小的顺序排列,则A的特征值恰好为±σi,i=1,2,…,N和M-N个零,±σi对应的特征向量分别为1/√2(uT i,vT i)T和1/√2(uT i,-vT i)T. 展开更多
关键词 ritz 增广矩阵 标准正交基 特征值 奇异值
原文传递
IMPROVING EIGENVECTORS IN ARNOLDI'S METHOD 被引量:4
9
作者 Zhong-xiao Jia (Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China) Ludwig Elsner (Fakultat fur Mathematik, University Bielefeld, Postfach 100131, 33501 Bielefeld,Germany) 《Journal of Computational Mathematics》 SCIE CSCD 2000年第3期265-276,共12页
The Ritz vectors obtained by Arnoldi's method may not be good approxima- tions and even may not converge even if the corresponding Ritz values do. In order to improve the quality of Ritz vectors and enhance the e... The Ritz vectors obtained by Arnoldi's method may not be good approxima- tions and even may not converge even if the corresponding Ritz values do. In order to improve the quality of Ritz vectors and enhance the efficiency of Arnoldi type algorithms, we propose a strategy that uses Ritz values obtained from an m-dimensional Krylov subspace but chooses modified approximate eigenvectors in an (m + 1)-dimensional Krylov subspace. Residual norm of each new approximate eigenpair is minimal over the span of the Ritz vector and the (m+1)th basis vector, which is available when the m-step Arnoldi process is run. The resulting modi- fied m-step Arnoldi method is better than the standard m-step one in theory and cheaper than the standard (m + 1)-step one. Based on this strategy, we present a modified m-step restarted Arnoldi algorithm. Numerical examples show that the modified m-step restarted algorithm and its version with Chebyshev acceleration are often considerably more efficient than the standard (m+ 1)-step restarted ones. 展开更多
关键词 Large unsymmetric The m-step Arnoldi process The m-step Arnoldi method eigenvalue ritz value EIGENvector ritz vector Modified
原文传递
计算大规模矩阵最大最小奇异值和奇异向量的两个精化Lanczos算法 被引量:6
10
作者 贾仲孝 张萍 《计算数学》 CSCD 北大核心 2003年第3期293-304,共12页
1.引言 在科学工程计算中经常需要计算大规模矩阵的少数最大或最小的奇异值及其所对应的奇异子空间.
关键词 大规模矩阵 奇异值 奇异向量 精化lanczos算法 收敛性 显式重新启动 正交投影 ritz 奇异值分解 ritz向量
原文传递
求解大规模Hamilton矩阵特征问题的辛Lanczos算法的误差分析 被引量:3
11
作者 闫庆友 魏小鹏 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第1期91-106,共16页
对求解大规模稀疏Hamilton矩阵特征问题的辛Lanczos算法给出了舍入误差分析.分析表明辛Lanczos算法在无中断时,保Hamilton结构的限制没有破坏非对称Lanczos算法的本质特性.本文还讨论了辛Lanczos算法计算出的辛Lanczos向量的J一正交性... 对求解大规模稀疏Hamilton矩阵特征问题的辛Lanczos算法给出了舍入误差分析.分析表明辛Lanczos算法在无中断时,保Hamilton结构的限制没有破坏非对称Lanczos算法的本质特性.本文还讨论了辛Lanczos算法计算出的辛Lanczos向量的J一正交性的损失与Ritz值收敛的关系.结论正如所料,当某些Ritz值开始收敛时.计算出的辛Lanczos向量的J-正交性损失是必然的.以上结果对辛Lanczos算法的改进具有理论指导意义. 展开更多
关键词 lanczos算法 HAMILTON矩阵 特征值 误差分析 ritz ritz向量 J-正交性
下载PDF
解大规模非对称线性方程组的Lanczos方法和精化Lanczos方法 被引量:3
12
作者 贾仲孝 李焱淼 《数值计算与计算机应用》 CSCD 北大核心 2004年第1期48-59,共12页
A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the... A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the elgenvector of the cross-product matrix of an augmented matrix associated with the eigenvalue zero. The standard Lanczos method and an improved refined Lanczos method are proposed that compute approximate eigenvectors and return approximate solutions of the linear system. An implicitly restarted Lanczos algorithm and its refined version are developed. Theoretical analysis and numerical experiments show the refined method is better than the standard one. If the large matrix has small eigenvalues, the two new algorithms are much faster than the unpreconditioned restarted GMRES. 展开更多
关键词 非对称线性方程组 lanczos 增广矩阵 奇异向量 特征值 数值计算
原文传递
计算部分奇异值分解的隐式重新启动的双对角化Lanczos方法和精化的双对角化Lanczos方法
13
作者 贾仲孝 牛大田 《计算数学》 CSCD 北大核心 2004年第1期13-24,共12页
The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest sin... The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest singular values and corresponding singular vertors, but the method may encounter some convergence problems. In this paper we analyse the convergence of the method and show why it may fail to converge. To correct this possible nonconvergence, we propose a refined bidiagonalization Lanczos method and apply the implicitly restarting technique to it, and we then present an implicitly restarted bidiagonalization Lanczos algorithm(IRBL) and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL). A new implicitly restarting scheme and a reliable and efficient algorithm for computing refined shifts are developed for this special structure eigenproblem.Theoretical analysis and numerical experiments show that IRRBL performs much better than IRBL. 展开更多
关键词 奇异值分解 双对角化 收敛性 增广矩阵 特征值 lanczos 隐式重新启动
原文传递
特征值问题的Davidson型方法及其实现技术 被引量:3
14
作者 戴小英 高兴誉 周爱辉 《数值计算与计算机应用》 CSCD 2006年第3期218-240,共23页
Davidson方法及其变型是一类非常流行的求解大规模特征值问题的方法.本文将从理论和实现两个角度,综述了Davidson型方法,包括Jacobi-Davidson方法的基本思想和发展概况.
关键词 子空间方法 Davidson方法 JACOBI-DAVIDSON方法 ritz 特征值
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部