期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving Land Resource Evaluation Using Fuzzy Neural Network Ensembles 被引量:11
1
作者 XUE Yue-Ju HU Yue-Ming +3 位作者 LIU Shu-Guang YANG Jing-Feng CHEN Qi-Chang BAO Shi-Tai 《Pedosphere》 SCIE CAS CSCD 2007年第4期429-435,共7页
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource exper... Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. 展开更多
关键词 back propagation neural network (BPNN) data types fuzzy neural network ensembles land resource evaluation radial basis function neural network (RBFNN)
下载PDF
Application of Bayesian Network Learning Methods to Land Resource Evaluation
2
作者 HUANG Jiejun HE Xiaorong WAN Youchua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期1041-1045,共5页
Bayesian network has a powerful ability/or reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective w... Bayesian network has a powerful ability/or reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian net- work structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0. 826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation. 展开更多
关键词 Bayesian networks data mining land resource evaluation MODELS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部