Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges ...Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges in precisely defining SICLU and constructing comprehensive indicators,which has hindered the exploration of factors influencing LSO within the SICLU framework.To address this gap,we integrated self-efficacy theory into the design of an index framework for evaluating SICLU.We subsequently employed econometric models to analyze the significant factors that impact LSO.Our findings reveal that SICLU can be divided into four key dimensions:intensive management,efficient output,resource conservation,and ecological environment optimization.Furthermore,it is crucial to incorporate belief-based cognitive factors into the index system,as farmers’ understanding of fertilizer and pesticide application significantly influences their willingness to engage in LSO.Moreover,we identify grain market turnover as the most influential factor in promoting LSO,with single-factor contribution rates reaching 70.9% for cultivated land transfer willingness and 62.5% for the total planting areas.Interestingly,unlike irrigation and agricultural machinery inputs,increased labor inputs correspond to larger planting areas for farmers.This trend may be attributed to reduced labor availability because of rural labor migration,whereas the reduction in irrigation and agricultural input is contingent on innovations in production practices and the transfer of cultivated land management rights.Importantly,SICLU dynamically influences LSO,with each index related to SICLU having an optimal range that fosters LSO.These insights offer valuable guidance for policymakers,emphasizing farmers as their central focus,with the adjustment of input and output factors as a means to achieve LSO as the ultimate goal.In conclusion,we propose research avenues for further enriching the SICLU framework to ensure that it aligns with the specific characteristics of regional agricultural development.展开更多
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of...The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.展开更多
Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes...Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryo- phyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, compar- ison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs.展开更多
Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential respons...Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.展开更多
Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant vari...Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.展开更多
The development of new taxonomical theories and approaches, particularly molecular phylogenetics, has led to the expansion of traditional morphology-based taxonomy into the concept of "integrative taxonomy."...The development of new taxonomical theories and approaches, particularly molecular phylogenetics, has led to the expansion of traditional morphology-based taxonomy into the concept of "integrative taxonomy." Taxonomic knowledge has assumed greater significance in recent years, particularly because of growing concerns over the looming biodiversity crisis. Since its establishment in 1938, the Kunming Institute of Botany(KIB), which is located in Yunnan province in Southwest China, has focused attention on the taxonomy and conservation of the flora of China. For the forthcoming 80 th anniversary of KIB, we review the achievements of researchers at KIB and their associates with respect to the taxonomy of land plants, fungi, and lichen. Major taxonomic advances are summarized for families of Calymperaceae,Cryphaeaceae, Lembophyllaceae, Neckeraceae, Polytrichaceae and Pottiaceae of mosses, Pteridaceae and Polypodiaceae of ferns, Taxaceae and Cycadaceae of gymnosperms, Asteraceae, Begoniaceae, Ericaceae,Euphorbiaceae, Gesneriaceae, Lamiaceae, Orchidaceae, Orobanchaceae, Poaceae, Theaceae and Urticaceae of angiosperms, Agaricaceae, Amanitaceae, Boletaceae, Cantharellaceae, Physalacriaceae Russulaceae, Suillaceae and Tuberaceae of fungi, and Ophioparmaceae and Parmeliaceae of lichens. Regarding the future development of taxonomy at KIB, we recommend that taxonomists continue to explore the biodiversity of China, integrate new theories and technologies with traditional taxonomic approaches,and engage in creative monographic work, with support from institutions, funding agencies, and the public.展开更多
Cytidine-to-uridine(C-to-U)RNA editing is common in coding regions of organellar genomes throughout land plants.In most cases RNA editing alters translated amino acids or creates new start codons,potentially confounds...Cytidine-to-uridine(C-to-U)RNA editing is common in coding regions of organellar genomes throughout land plants.In most cases RNA editing alters translated amino acids or creates new start codons,potentially confounds phylogenetic reconstructions.In this study,we used the spike moss genus Selaginella(lycophytes),which has the highest frequency of RNA editing,as a model to test the effects of extreme RNA editing on phylogenetic reconstruction.We predicted the C-to-U RNA editing sites in coding regions of 18 Selaginella plastomes,and reconstructed the phylogenetic relationships within Selaginella based on three data set pairs consisted of plastome or RNA-edited coding sequences,first and second codon positions,and translated amino acid sequences,respectively.We predicted between 400 and 3100 RNA editing sites of 18 Selaginella plastomes.The numbers of RNA editing sites in plastomes were highly correlated with the GC content of first and second codon positions,but not correlated with the GC content of plastomes as a whole.Contrast phylogenetic analyses showed that there were substantial differences(e.g.,the placement of clade B in Selaginella)between the phylogenies generated by the plastome and RNA-edited data sets.This empirical study provides evidence that extreme C-to-U RNA editing in the coding regions of organellar genomes alters the sequences used for phylogenetic reconstruction,and might even confound phylogenetic reconstruction.Therefore,RNA editing sites should be corrected when plastid or mitochondrial genes are used for phylogenetic studies,particularly in those lineages with abundant organellar RNA editing sites,such as hornworts,quillworts,spike mosses,and some seed plants.展开更多
The superfamily of cytochrome P450(CYP)enzymes plays key roles in plant evolution and metabolic diversification.This review provides a status on the CYP Iandscape within green algae and land plants.The 11 conserved CY...The superfamily of cytochrome P450(CYP)enzymes plays key roles in plant evolution and metabolic diversification.This review provides a status on the CYP Iandscape within green algae and land plants.The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algaespecific clans are recognized.Clan 71,72,and 85 remain the largest CYP clans and include many taxaspecific CYP(sub)families reflecting emergence of linage-specific pathways.Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways.High substrate promiscuity is commonly observed for CYPs from large families,favoring retention of gene duplicates and neofunctionalization,thus seeding acquisition of new functions.Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple exampies of convergent evolution where CYPs have been independently recruited from the same or different CYP families,to adapt to similar environmental challenges or ecological niches.Sometimes only a single or a few mutations are required for functional interconversion.A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database(erda.dk/public/vgrid/PlantP450/).展开更多
The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathwa...The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.21SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcornitrella patens, exogenous ABA suppressed expression of cuticle- related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment.展开更多
The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctio...The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctions took place in the marine realm, particularly affecting radiolarians, conodonts, bivalves, ammonoids and reef-building organisms. On land, the case for a Late Triassic mass extinction is much more tenuous and has largely focused on tetrapod vertebrates(amphibians and reptiles), though some workers advocate a sudden endTriassic(TJB) extinction of land plants. Nevertheless, an extensive literature does not identify a major extinction of land plants at the TJB, and a comprehensive review of palynological records concluded that TJB vegetation changes were non-uniform(different changes in different places), not synchronous and not indicative of a mass extinction of land plants. Claims of a substantial perturbation of plant ecology and diversity at the TJB in East Greenland are indicative of a local change in the paleoflora largely driven by lithofacies changes resulting in changing taphonomic filters. Plant extinctions at the TJB were palaeogeographically localized events, not global in extent. With new and more detailed stratigraphic data, the perceived TJB tetrapod extinction is mostly an artifact of coarse temporal resolution, the compiled correlation effect. The amphibian, archosaur and synapsid extinctions of the Late Triassic are not concentrated at the TJB, but instead occur stepwise, beginning in the Norian and extending into the Hettangian. There was a disruption of the terrestrial ecosystem across the TJB, but it was more modest than generally claimed. The ecological severity of the end-Triassic nonmarine biotic events are relatively low on the global scale. Biotic turnover at the end of the Triassic was likely driven by the CAMP(Central Atlantic Magmatic Province) eruptions, which caused significant environmental perturbations(cooling, warming, acidification) through outgassing, but the effects on the nonmarine biota appear to have been localized, transient and not catastrophic. Long-term changes in the terrestrial biota across the TJB are complex,diachronous and likely climate driven evolutionary changes in the context of fluctuating background extinction rates, not a single, sudden or mass extinction.展开更多
Terrestrial floras underwent important changes during the Lopingian (Late Permian), Early Triassic, and Middle Triassic, i.e., before, during, and after the end-Permian mass extinction. An accurate account of these ...Terrestrial floras underwent important changes during the Lopingian (Late Permian), Early Triassic, and Middle Triassic, i.e., before, during, and after the end-Permian mass extinction. An accurate account of these developments requires reliable correlation. Macrofossils of land plants can only provide a low-resolution biostratigraphy, while detailed zonation schemes based on palynomorphs are available for many regions. Their applicability is still limited due to several factors, such as (micro-)floral provincialism, a lack of suitable marker taxa commonly occurring at important boundaries, and in many cases a lack of independent age control. Nevertheless, these palynostratigraphic schemes are regularly used for dating and correlation of successions between different regions. To support such efforts, the biozonation schemes based on palynomorphs from the Lopingian up to and including the Middle Triassic from across the world are summarized and revised. Thus, a consistent correlation of palynozones with the currently recognized international stages is established.展开更多
Land plants and algae form a supergroup, the Archaeplastida, believed to be monophyletic. We report the results of an analysis of the phylogeny of putative globins in the currently available genomes to bacterial and o...Land plants and algae form a supergroup, the Archaeplastida, believed to be monophyletic. We report the results of an analysis of the phylogeny of putative globins in the currently available genomes to bacterial and other eu- karyote hemoglobins (Hbs). Archaeplastida genomes have 3/3 and 2/2 Hbs, with the land plant genomes having group 2 2/ 2 Hbs, except for the unexpected occurrence of two group 1 2/2 Hbs in Ricinus communis. Bayesian analysis shows that plant 3/3 Hbs are related to vertebrate neuroglobins and bacterial flavohemoglobins (FHbs). We sought to define the bacterial groups, whose ancestors shared the precursors of Archaeplastida Hbs, via Bayesian and neighbor-joining anal- yses based on COBALTalignment of representative sets of bacterial 3/3 FHb-like globins and group I and 2 2/2 Hbs with the corresponding Archaeplastida Hbs. The results suggest that the Archaeplastida 3/3 and group 1 2/2 Hbs could have orig- inated from the horizontal gene transfers (HGTs) that accompanied the two generally accepted endosymbioses of a pro- teobacterium and a cyanobacterium with a eukaryote ancestor. In contrast, the origin of the group 2 212 Hbs unexpectedly appears to involve HGT from a bacterium ancestral to Chloroflexi, Deinococcales, Bacilli, and Actinomycetes. Furthermore, although intron positions and phases are mostly conserved among the land plant 3/3 and 2/2 globin genes, introns are absent in the algal 3/3 genes and intron positions and phases are highly variable in their 2/2 genes. Thus, introns are irrelevant to globin evolution in Archaeplastida.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42071226,41671176)Taishan Scholars Youth Expert Support Plan of Shandong Province(No.TSQN202306183)。
文摘Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges in precisely defining SICLU and constructing comprehensive indicators,which has hindered the exploration of factors influencing LSO within the SICLU framework.To address this gap,we integrated self-efficacy theory into the design of an index framework for evaluating SICLU.We subsequently employed econometric models to analyze the significant factors that impact LSO.Our findings reveal that SICLU can be divided into four key dimensions:intensive management,efficient output,resource conservation,and ecological environment optimization.Furthermore,it is crucial to incorporate belief-based cognitive factors into the index system,as farmers’ understanding of fertilizer and pesticide application significantly influences their willingness to engage in LSO.Moreover,we identify grain market turnover as the most influential factor in promoting LSO,with single-factor contribution rates reaching 70.9% for cultivated land transfer willingness and 62.5% for the total planting areas.Interestingly,unlike irrigation and agricultural machinery inputs,increased labor inputs correspond to larger planting areas for farmers.This trend may be attributed to reduced labor availability because of rural labor migration,whereas the reduction in irrigation and agricultural input is contingent on innovations in production practices and the transfer of cultivated land management rights.Importantly,SICLU dynamically influences LSO,with each index related to SICLU having an optimal range that fosters LSO.These insights offer valuable guidance for policymakers,emphasizing farmers as their central focus,with the adjustment of input and output factors as a means to achieve LSO as the ultimate goal.In conclusion,we propose research avenues for further enriching the SICLU framework to ensure that it aligns with the specific characteristics of regional agricultural development.
基金funded by the Australian Research Council grants DE140100946(SM)and DP140100666(TB)
文摘The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
文摘Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryo- phyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, compar- ison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs.
基金supported by the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences (XDA05050201-04-01)the National Natural Science Foundation of China (41371053, 31500369)the ‘One Hundred Talent’ Program of Chinese Academy of Sciences (Y451H31001)
文摘Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.
文摘Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.
基金supported by the National Natural Science Foundation of China (No. 31700182)
文摘The development of new taxonomical theories and approaches, particularly molecular phylogenetics, has led to the expansion of traditional morphology-based taxonomy into the concept of "integrative taxonomy." Taxonomic knowledge has assumed greater significance in recent years, particularly because of growing concerns over the looming biodiversity crisis. Since its establishment in 1938, the Kunming Institute of Botany(KIB), which is located in Yunnan province in Southwest China, has focused attention on the taxonomy and conservation of the flora of China. For the forthcoming 80 th anniversary of KIB, we review the achievements of researchers at KIB and their associates with respect to the taxonomy of land plants, fungi, and lichen. Major taxonomic advances are summarized for families of Calymperaceae,Cryphaeaceae, Lembophyllaceae, Neckeraceae, Polytrichaceae and Pottiaceae of mosses, Pteridaceae and Polypodiaceae of ferns, Taxaceae and Cycadaceae of gymnosperms, Asteraceae, Begoniaceae, Ericaceae,Euphorbiaceae, Gesneriaceae, Lamiaceae, Orchidaceae, Orobanchaceae, Poaceae, Theaceae and Urticaceae of angiosperms, Agaricaceae, Amanitaceae, Boletaceae, Cantharellaceae, Physalacriaceae Russulaceae, Suillaceae and Tuberaceae of fungi, and Ophioparmaceae and Parmeliaceae of lichens. Regarding the future development of taxonomy at KIB, we recommend that taxonomists continue to explore the biodiversity of China, integrate new theories and technologies with traditional taxonomic approaches,and engage in creative monographic work, with support from institutions, funding agencies, and the public.
基金We thank Dr.Peng-Fei Ma for improving the manuscript.We also thank the two anonymous reviewers for their constructive comments and suggestions.The study was supported by the Strategic Priority Research Program,Chinese Academy of Sciences,China(XDB 31000000)the National Natural Science Foundation of China(31970232)+1 种基金the Large-scale Scientific Facilities of the Chinese Academy of Sciences,China(2017-LSF-GBOWS-02)the technological leading talent project of Yunnan,China(2017HA014).
文摘Cytidine-to-uridine(C-to-U)RNA editing is common in coding regions of organellar genomes throughout land plants.In most cases RNA editing alters translated amino acids or creates new start codons,potentially confounds phylogenetic reconstructions.In this study,we used the spike moss genus Selaginella(lycophytes),which has the highest frequency of RNA editing,as a model to test the effects of extreme RNA editing on phylogenetic reconstruction.We predicted the C-to-U RNA editing sites in coding regions of 18 Selaginella plastomes,and reconstructed the phylogenetic relationships within Selaginella based on three data set pairs consisted of plastome or RNA-edited coding sequences,first and second codon positions,and translated amino acid sequences,respectively.We predicted between 400 and 3100 RNA editing sites of 18 Selaginella plastomes.The numbers of RNA editing sites in plastomes were highly correlated with the GC content of first and second codon positions,but not correlated with the GC content of plastomes as a whole.Contrast phylogenetic analyses showed that there were substantial differences(e.g.,the placement of clade B in Selaginella)between the phylogenies generated by the plastome and RNA-edited data sets.This empirical study provides evidence that extreme C-to-U RNA editing in the coding regions of organellar genomes alters the sequences used for phylogenetic reconstruction,and might even confound phylogenetic reconstruction.Therefore,RNA editing sites should be corrected when plastid or mitochondrial genes are used for phylogenetic studies,particularly in those lineages with abundant organellar RNA editing sites,such as hornworts,quillworts,spike mosses,and some seed plants.
基金supported by a PhD fellowship provided through a Villum Foundation Young Investigator Program fellowship granted to Elizabeth H.J.Neils on(grant number 13167)supported by the VILLUM Center for Plant Plasticity(VKR023054)(B.L.M.)+1 种基金a European Research Council Advanced Grant(ERC-2012-ADG_20120314)the Novo Nordisk Foundation Distinguished Investigator 2019 Grant(NNF 0054563,The Black Holes in the Plant Universe).
文摘The superfamily of cytochrome P450(CYP)enzymes plays key roles in plant evolution and metabolic diversification.This review provides a status on the CYP Iandscape within green algae and land plants.The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algaespecific clans are recognized.Clan 71,72,and 85 remain the largest CYP clans and include many taxaspecific CYP(sub)families reflecting emergence of linage-specific pathways.Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways.High substrate promiscuity is commonly observed for CYPs from large families,favoring retention of gene duplicates and neofunctionalization,thus seeding acquisition of new functions.Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple exampies of convergent evolution where CYPs have been independently recruited from the same or different CYP families,to adapt to similar environmental challenges or ecological niches.Sometimes only a single or a few mutations are required for functional interconversion.A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database(erda.dk/public/vgrid/PlantP450/).
文摘The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.21SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcornitrella patens, exogenous ABA suppressed expression of cuticle- related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment.
文摘The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctions took place in the marine realm, particularly affecting radiolarians, conodonts, bivalves, ammonoids and reef-building organisms. On land, the case for a Late Triassic mass extinction is much more tenuous and has largely focused on tetrapod vertebrates(amphibians and reptiles), though some workers advocate a sudden endTriassic(TJB) extinction of land plants. Nevertheless, an extensive literature does not identify a major extinction of land plants at the TJB, and a comprehensive review of palynological records concluded that TJB vegetation changes were non-uniform(different changes in different places), not synchronous and not indicative of a mass extinction of land plants. Claims of a substantial perturbation of plant ecology and diversity at the TJB in East Greenland are indicative of a local change in the paleoflora largely driven by lithofacies changes resulting in changing taphonomic filters. Plant extinctions at the TJB were palaeogeographically localized events, not global in extent. With new and more detailed stratigraphic data, the perceived TJB tetrapod extinction is mostly an artifact of coarse temporal resolution, the compiled correlation effect. The amphibian, archosaur and synapsid extinctions of the Late Triassic are not concentrated at the TJB, but instead occur stepwise, beginning in the Norian and extending into the Hettangian. There was a disruption of the terrestrial ecosystem across the TJB, but it was more modest than generally claimed. The ecological severity of the end-Triassic nonmarine biotic events are relatively low on the global scale. Biotic turnover at the end of the Triassic was likely driven by the CAMP(Central Atlantic Magmatic Province) eruptions, which caused significant environmental perturbations(cooling, warming, acidification) through outgassing, but the effects on the nonmarine biota appear to have been localized, transient and not catastrophic. Long-term changes in the terrestrial biota across the TJB are complex,diachronous and likely climate driven evolutionary changes in the context of fluctuating background extinction rates, not a single, sudden or mass extinction.
基金supported by the Euregio Science Fund (call 2014, IPN16: "The end-Permian mass extinction in the Southern and Eastern Alps: extinction rates vs taphonomic biases in different depositional environments") of the Europaregion/Euregio Tirol-Südtirol-Trentino/Tirolo-Alto Adige-TrentinoSYNTHESYS (access call 4, 2016, GB-TAF-6751: "Diversity changes of spores and pollen during the Permian-Triassic mass extinction")
文摘Terrestrial floras underwent important changes during the Lopingian (Late Permian), Early Triassic, and Middle Triassic, i.e., before, during, and after the end-Permian mass extinction. An accurate account of these developments requires reliable correlation. Macrofossils of land plants can only provide a low-resolution biostratigraphy, while detailed zonation schemes based on palynomorphs are available for many regions. Their applicability is still limited due to several factors, such as (micro-)floral provincialism, a lack of suitable marker taxa commonly occurring at important boundaries, and in many cases a lack of independent age control. Nevertheless, these palynostratigraphic schemes are regularly used for dating and correlation of successions between different regions. To support such efforts, the biozonation schemes based on palynomorphs from the Lopingian up to and including the Middle Triassic from across the world are summarized and revised. Thus, a consistent correlation of palynozones with the currently recognized international stages is established.
文摘Land plants and algae form a supergroup, the Archaeplastida, believed to be monophyletic. We report the results of an analysis of the phylogeny of putative globins in the currently available genomes to bacterial and other eu- karyote hemoglobins (Hbs). Archaeplastida genomes have 3/3 and 2/2 Hbs, with the land plant genomes having group 2 2/ 2 Hbs, except for the unexpected occurrence of two group 1 2/2 Hbs in Ricinus communis. Bayesian analysis shows that plant 3/3 Hbs are related to vertebrate neuroglobins and bacterial flavohemoglobins (FHbs). We sought to define the bacterial groups, whose ancestors shared the precursors of Archaeplastida Hbs, via Bayesian and neighbor-joining anal- yses based on COBALTalignment of representative sets of bacterial 3/3 FHb-like globins and group I and 2 2/2 Hbs with the corresponding Archaeplastida Hbs. The results suggest that the Archaeplastida 3/3 and group 1 2/2 Hbs could have orig- inated from the horizontal gene transfers (HGTs) that accompanied the two generally accepted endosymbioses of a pro- teobacterium and a cyanobacterium with a eukaryote ancestor. In contrast, the origin of the group 2 212 Hbs unexpectedly appears to involve HGT from a bacterium ancestral to Chloroflexi, Deinococcales, Bacilli, and Actinomycetes. Furthermore, although intron positions and phases are mostly conserved among the land plant 3/3 and 2/2 globin genes, introns are absent in the algal 3/3 genes and intron positions and phases are highly variable in their 2/2 genes. Thus, introns are irrelevant to globin evolution in Archaeplastida.