Net area change analysis can dramatically underestimate total change of land cover, even sometimes seriously misinterpret ecological processes of the ecosystem, especially in arid or semiarid zones. In this paper, a s...Net area change analysis can dramatically underestimate total change of land cover, even sometimes seriously misinterpret ecological processes of the ecosystem, especially in arid or semiarid zones. In this paper, a suite of indices are presented to characterize land-cover swaps that may seriously damage the ecosystem in arid or semiarid zones, based on swap-change areas extracted from remotely sensed images. First, swap percentage of total area and swap intensity of total changes were used to determine the status of land-cover swap change in an area. Then, dominated swap category and individual swap- change intensity for a land-cover category were used to determine flagged land-cover swap-change categories. Finally, swap-change mode and Pielou's index were used to determine the land-cover swap-change processes of dominant categories. A case study is conducted using this approach, based on two land-cover maps in the 1980s and 2000 in Naiman Qi, Tongliao City, Inner Mongolia, China. This study shows that the approach can clearly quantify the severity and flagged classes of land-cover swap-change and reveal their relationship with ecological processes of the ecosystem. These results indicate that the approach can give deep insights into swap change, which can be very valuable to land-cover policy making and management.展开更多
In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) as...In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) assess the landscape fragmentation and habitat loss over time. Supervised classification of multi-temporal Landsat images was used through a pixel-based approach. Post–classification methods included systematic and random change detection, trajectories analysis and landscape fragmentation assessment. The overall accuracies(and Kappa statistics) were of 68.86%(0.63), 91.32%(0.79), 90.66%(0.88) and 91.88%(0.89) for 1972, 1987, 2000 and 2014, respectively. The spatio-temporal analyses indicated that forests, woodlands and savannahs dominated the landscapes during the four dates, though constant areal decreases were observed. The most important dynamic process was the decline of woodlands with an average annual net loss rate of –2%. Meanwhile, the most important land transformation occurred during the transition 2000–2014, due to anthropogenic pressures. Though the most important loss of vegetation greenness occurred in the unprotected areas, the overall analyses of change indicated a declining trend of land cover quality and an increasing landscape fragmentation. Sustainable conservation strategies should be promoted while focusing restoration attention on degraded lands and fragmented ecosystems in order to support rural livelihood and biodiversity conservation.展开更多
文摘Net area change analysis can dramatically underestimate total change of land cover, even sometimes seriously misinterpret ecological processes of the ecosystem, especially in arid or semiarid zones. In this paper, a suite of indices are presented to characterize land-cover swaps that may seriously damage the ecosystem in arid or semiarid zones, based on swap-change areas extracted from remotely sensed images. First, swap percentage of total area and swap intensity of total changes were used to determine the status of land-cover swap change in an area. Then, dominated swap category and individual swap- change intensity for a land-cover category were used to determine flagged land-cover swap-change categories. Finally, swap-change mode and Pielou's index were used to determine the land-cover swap-change processes of dominant categories. A case study is conducted using this approach, based on two land-cover maps in the 1980s and 2000 in Naiman Qi, Tongliao City, Inner Mongolia, China. This study shows that the approach can clearly quantify the severity and flagged classes of land-cover swap-change and reveal their relationship with ecological processes of the ecosystem. These results indicate that the approach can give deep insights into swap change, which can be very valuable to land-cover policy making and management.
基金funded by the German Federal Ministry for Education and Research (BMBF)hosted by the Kwame Nkrumah University of Science and Technology of Kumasi,Ghana+1 种基金the Laboratory of Botany and Plant Ecology (University of Lome, Togo) for fieldwork supportthe contribution of CGIAR-DS through the funding to Quang Bao Le
文摘In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) assess the landscape fragmentation and habitat loss over time. Supervised classification of multi-temporal Landsat images was used through a pixel-based approach. Post–classification methods included systematic and random change detection, trajectories analysis and landscape fragmentation assessment. The overall accuracies(and Kappa statistics) were of 68.86%(0.63), 91.32%(0.79), 90.66%(0.88) and 91.88%(0.89) for 1972, 1987, 2000 and 2014, respectively. The spatio-temporal analyses indicated that forests, woodlands and savannahs dominated the landscapes during the four dates, though constant areal decreases were observed. The most important dynamic process was the decline of woodlands with an average annual net loss rate of –2%. Meanwhile, the most important land transformation occurred during the transition 2000–2014, due to anthropogenic pressures. Though the most important loss of vegetation greenness occurred in the unprotected areas, the overall analyses of change indicated a declining trend of land cover quality and an increasing landscape fragmentation. Sustainable conservation strategies should be promoted while focusing restoration attention on degraded lands and fragmented ecosystems in order to support rural livelihood and biodiversity conservation.