Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent s...Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey. A map of soil carbon sourcesJsinks has been prepared based on a spatial analysis scheme with GIg. Spatial statistics showed that land use changes had caused 30.7 + 13.64 Tg of surface soil organic carbon loss, which accounts for 0.33% of the total carbon storage of 9.22 Pg. The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~ 40.80 Tg increase. Land use changes in Northeast China (NE) have the largest impact on soil organic carbon storage compared with other regions. Paddy fields, which were mainly transformed into dry farmland in NE, and constructed land in other regions, were the largest carbon sources among the land use types. Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields. Dry farmland in the NE region formed the largest soil organic carbon sink, as some were trans- formed into paddy fields, forested land, and other land use types with high SOCD.展开更多
The urban population and urbanized land in China have both increased markedly since the 1980 s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In p...The urban population and urbanized land in China have both increased markedly since the 1980 s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples(top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon(SOC), soil inorganic carbon(SIC), and total carbon(TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance(CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Urban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and suburban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.展开更多
基金financially supported by the Geological Survey Project of CGS(12120113000400 and DD20160323)the Fundamental Research Funds for the Central Universities (2652015055)
文摘Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey. A map of soil carbon sourcesJsinks has been prepared based on a spatial analysis scheme with GIg. Spatial statistics showed that land use changes had caused 30.7 + 13.64 Tg of surface soil organic carbon loss, which accounts for 0.33% of the total carbon storage of 9.22 Pg. The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~ 40.80 Tg increase. Land use changes in Northeast China (NE) have the largest impact on soil organic carbon storage compared with other regions. Paddy fields, which were mainly transformed into dry farmland in NE, and constructed land in other regions, were the largest carbon sources among the land use types. Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields. Dry farmland in the NE region formed the largest soil organic carbon sink, as some were trans- formed into paddy fields, forested land, and other land use types with high SOCD.
基金Under the auspices of National Key Technology Research and Development Program(No.2007BAC28B01)Innovation Project of State Key Laboratory of Urban and Regional Ecology of China
文摘The urban population and urbanized land in China have both increased markedly since the 1980 s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples(top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon(SOC), soil inorganic carbon(SIC), and total carbon(TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance(CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Urban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and suburban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.