Two typical provincial capitals (Nanjing and Zhengzhou) and two counties (Rugao and Yuanyang) in east (Jiangsu Province) and central (Henan Province) China were chosen respectively as the developed and less de...Two typical provincial capitals (Nanjing and Zhengzhou) and two counties (Rugao and Yuanyang) in east (Jiangsu Province) and central (Henan Province) China were chosen respectively as the developed and less developed comparative cases for pedodiversity and land use diversity correlative analysis by borrowing the recently better developed pedodiversity methodology. Land use classification was worked out using remote sensing images in three different periods (1986-1988, 2000-2001 and 2004-2006) for these studied case areas before the calculation of the constituent diversity index and spatial distribution diversity index modified after Shannon entropy in 2 kmx2 km grid scale of the soil and land use pattern were conducted and then a connection index was proposed to evaluate the relationship between soil and land use diversity. Results show that during the years from 1986 to 2006, the composition and spatial distribution of regional land use pattern had changed greatly. The agricultural land area of all the studied case areas decreased obviously in which Nanjing has the highest decrement of 895.98 km2 mainly into urban use while the other land use type area changes show the same trend. The connection index of four typical soil family types and typical urban land use types, i.e., urban construction land, transportation land and industrial and mining area all increased in this period. In the studied case areas, there is the highest soil constituent diversity in Zhengzhou at 0.779 while the simplest soil constituent diversity in Rugao at 0.582. Meanwhile we have higher land use diversity in the more urbanized Jiangsu Province than Henan Province, Nanjing is ranking the first that has been getting higher and higher in the three periods at 0.366 in 1986-1988, 0.483 in 2000-2001 and 0.545 in 2004-2006. Finally, the connection index figures to evaluate the relationship between soil and land use diversity of the studied areas were compared to show the similar phenomenon that this figure grows fastest in Nanjing followed by Zhengzhou and other places.展开更多
Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies...Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies with aspects of different orientations in the Trans-Himalayan region at a local scale. Here, we examined the effects of incoming solar radiation on variation in woody species composition and compared the diversity between the northeast- and southwest-facing slopes in a Trans-Himalayan valley of Nepal. We also examined the implicit interactions between slope orientation and land use in determining the compositional variations between the slopes. We selected two pairs of northeast- and southwest-facing slopes where the first pair has a similar land use and differs in exposure only(Pisang site) while the other pair has clear differences in land use in addition to slope exposure(Braka site). In each site, we sampled 72 plots(36 on each slope) in which the presence and absence of woody species, environmental variables, and disturbance were recorded. Correspondence Analysis(CA) results suggested that the woody species composition significantly varied between northeast- and southwest-facing slopes at both sites, and was significantly correlated with measured environmental variables such as radiation index, altitude, and canopy openness. In the Braka site,mean alpha diversity was significantly higher on southwest-facing slopes. In contrast, beta diversity and gamma diversity were greater on northeast-facing slopes at both sites. Our results suggest that topographic variables(e.g., radiation index) affect species composition between the slopes, likely due to their influence on small scale abiotic environmental variables. However, the effects of land use, such as livestock browsing/grazing may interact with the effects of slope exposure, effectively reducing differences in species composition within slopes but enhancing the differences in beta diversity between contrasting slopes in the Braka. We conclude that slope orientation and land use are important factors in structuring the woody species composition and diversity in the arid Trans-Himalayan region. We suggest that both environmental and land use variables should be taken into consideration in future studies on plant community structure along the cultural landscapes.展开更多
基金National Natural Science Foundation of China, No.41171177
文摘Two typical provincial capitals (Nanjing and Zhengzhou) and two counties (Rugao and Yuanyang) in east (Jiangsu Province) and central (Henan Province) China were chosen respectively as the developed and less developed comparative cases for pedodiversity and land use diversity correlative analysis by borrowing the recently better developed pedodiversity methodology. Land use classification was worked out using remote sensing images in three different periods (1986-1988, 2000-2001 and 2004-2006) for these studied case areas before the calculation of the constituent diversity index and spatial distribution diversity index modified after Shannon entropy in 2 kmx2 km grid scale of the soil and land use pattern were conducted and then a connection index was proposed to evaluate the relationship between soil and land use diversity. Results show that during the years from 1986 to 2006, the composition and spatial distribution of regional land use pattern had changed greatly. The agricultural land area of all the studied case areas decreased obviously in which Nanjing has the highest decrement of 895.98 km2 mainly into urban use while the other land use type area changes show the same trend. The connection index of four typical soil family types and typical urban land use types, i.e., urban construction land, transportation land and industrial and mining area all increased in this period. In the studied case areas, there is the highest soil constituent diversity in Zhengzhou at 0.779 while the simplest soil constituent diversity in Rugao at 0.582. Meanwhile we have higher land use diversity in the more urbanized Jiangsu Province than Henan Province, Nanjing is ranking the first that has been getting higher and higher in the three periods at 0.366 in 1986-1988, 0.483 in 2000-2001 and 0.545 in 2004-2006. Finally, the connection index figures to evaluate the relationship between soil and land use diversity of the studied areas were compared to show the similar phenomenon that this figure grows fastest in Nanjing followed by Zhengzhou and other places.
基金Annapurna Conservation Area Project (ACAP)Norwegian State Educational Loan Fund (Lnekassen)+2 种基金Faculty of Mathematics and Natural Sciences,University of Bergen for financingfunded by Norwegian Research Council(project no.148910/730)supported by The Norwegian Council for Higher Education Programme for Development Research and Education(NUFU Project ID:PRO 04/2002)
文摘Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies with aspects of different orientations in the Trans-Himalayan region at a local scale. Here, we examined the effects of incoming solar radiation on variation in woody species composition and compared the diversity between the northeast- and southwest-facing slopes in a Trans-Himalayan valley of Nepal. We also examined the implicit interactions between slope orientation and land use in determining the compositional variations between the slopes. We selected two pairs of northeast- and southwest-facing slopes where the first pair has a similar land use and differs in exposure only(Pisang site) while the other pair has clear differences in land use in addition to slope exposure(Braka site). In each site, we sampled 72 plots(36 on each slope) in which the presence and absence of woody species, environmental variables, and disturbance were recorded. Correspondence Analysis(CA) results suggested that the woody species composition significantly varied between northeast- and southwest-facing slopes at both sites, and was significantly correlated with measured environmental variables such as radiation index, altitude, and canopy openness. In the Braka site,mean alpha diversity was significantly higher on southwest-facing slopes. In contrast, beta diversity and gamma diversity were greater on northeast-facing slopes at both sites. Our results suggest that topographic variables(e.g., radiation index) affect species composition between the slopes, likely due to their influence on small scale abiotic environmental variables. However, the effects of land use, such as livestock browsing/grazing may interact with the effects of slope exposure, effectively reducing differences in species composition within slopes but enhancing the differences in beta diversity between contrasting slopes in the Braka. We conclude that slope orientation and land use are important factors in structuring the woody species composition and diversity in the arid Trans-Himalayan region. We suggest that both environmental and land use variables should be taken into consideration in future studies on plant community structure along the cultural landscapes.