This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark i...This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.展开更多
In order to study the relationship between landmarks and spatial memory in short-nosed fruit bat, Cynopterus sphinx (Megachiroptera, Pteropodidae), we simulated a foraging environment in the laboratory. Different la...In order to study the relationship between landmarks and spatial memory in short-nosed fruit bat, Cynopterus sphinx (Megachiroptera, Pteropodidae), we simulated a foraging environment in the laboratory. Different landmarks were placed to gauge the spatial memory of C. sphinx. We changed the number of landmarks every day with 0 landmarks again on the fifth day (from 0, 2, 4, 8 to 0). Individuals from the control group were exposed to the identical artificial foraging environment, but without landmarks. The results indicated that there was significant correlation between the time of the first foraging and the experimental days in both groups (Pearson Correlation: experimental group: r=-0.593, P〈0.01; control group: r=-0.581, P〈0.01). There was no significant correlation between the success rates of foraging and the experimental days in experimental groups (Pearson Correlation: r=0.177, P〉0.05), but there was significant correlation between the success rates of foraging and the experimental days in the control groups (Pearson Correlation: r=0.445, P〈0.05). There was no significant difference for the first foraging time between experimental and control groups (GLM: F0.05,1=4.703, P〉0.05); also, there was no significant difference in success rates of foraging between these two groups (GLM: F0.05,1=0.849,P〉0.05). The results of our experiment suggest that spatial memory in C. sphinx was formed gradually and that the placed landmarks appeared to have no discernable effects on the memory of the foraging space.展开更多
Despite extensive investigations,no precursor patterns for reliably predicting major earthquakes have thus far been identified.Seismogenic locked segments that can accumulate adequate strain energy to cause major eart...Despite extensive investigations,no precursor patterns for reliably predicting major earthquakes have thus far been identified.Seismogenic locked segments that can accumulate adequate strain energy to cause major earthquakes are highly heterogeneous and low brittle.The progressive cracking of the locked segments with these properties can produce an interesting seismic phenomenon:a landmark earthquake and a sequence of smaller subsequent earthquakes(pre-shocks)always arise prior to another landmark earthquake within a well-defined seismic zone and its current seismic period.Applying a mechanical model,magnitude constraint conditions,and case study data of 62 worldwide seismic zones,we show that two adjacent landmark earthquakes reliably occur at the volume-expansion point and peak-stress point(rupture)of a locked segment;thus,the former is an identified precursor for the latter.Such a precursor seismicity pattern before the locked-segment rupture has definite physical meanings,and it is universal regardless of the focal depth.Because the evolution of landmark earthquakes follows a deterministic rule described by the model,they are predictable.The results of this study lay a firm physical foundation for reliably predicting the occurrence of future landmark earthquakes in a seismic zone and can greatly improve our understanding of earthquake generation mechanism.展开更多
In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this ...In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.展开更多
The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the ...The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.展开更多
The accuracy and repeatability of computer aided cervical vertebra landmarking (CACVL) were investigated in cephalogram.120 adolescents (60 boys,60 girls) aged from 9.1 to 17.2 years old were randomly selected.Twenty-...The accuracy and repeatability of computer aided cervical vertebra landmarking (CACVL) were investigated in cephalogram.120 adolescents (60 boys,60 girls) aged from 9.1 to 17.2 years old were randomly selected.Twenty-seven landmarks from the second to fifth cervical vertebrae on the lat-eral cephalogram were identified.In this study,the system of CACVL was developed and used to iden-tify and calculate the landmarks by fast marching method and parabolic curve fitting.The accuracy and repeatability in CACVL group were compared with those in two manual landmarking groups [orthodon-tic experts (OE) group and orthodontic novices (ON) group].The results showed that,as for the accu-racy,there was no significant difference between CACVL group and OE group no matter in x-axis or y-axis (P>0.05),but there was significant difference between CACVL group and ON group,as well as OE group and ON group in both axes (P<0.05).As for the repeatability,CACVL group was more reli-able than OE group and ON group in both axes.It is concluded that CACVL has the same or higher ac-curacy,better repeatability and less workload than manual landmarking methods.It’s reliable for cervi-cal parameters identification on the lateral cephalogram and cervical vertebral maturation prediction in orthodontic practice and research.展开更多
High-density street-level reliable landmarks are one of the important foundations for street-level geolocation.However,the existing methods cannot obtain enough street-level landmarks in a short period of time.In this...High-density street-level reliable landmarks are one of the important foundations for street-level geolocation.However,the existing methods cannot obtain enough street-level landmarks in a short period of time.In this paper,a street-level landmarks acquisition method based on SVM(Support Vector Machine)classifiers is proposed.Firstly,the port detection results of IPs with known services are vectorized,and the vectorization results are used as an input of the SVM training.Then,the kernel function and penalty factor are adjusted for SVM classifiers training,and the optimal SVM classifiers are obtained.After that,the classifier sequence is constructed,and the IPs with unknown service are classified using the sequence.Finally,according to the domain name corresponding to the IP,the relationship between the classified server IP and organization name is established.The experimental results in Guangzhou and Wuhan city in China show that the proposed method can be as a supplement to existing typical methods since the number of obtained street-level landmarks is increased substantially,and the median geolocation error using evaluated landmarks is reduced by about 2 km.展开更多
AIM To characterize esophageal endoluminal landmarks to permit radial and longitudinal esophageal orientation and accurate lesion location.METHODS Distance from the incisors and radial orientation were estimated for t...AIM To characterize esophageal endoluminal landmarks to permit radial and longitudinal esophageal orientation and accurate lesion location.METHODS Distance from the incisors and radial orientation were estimated for the main left bronchus and the left atrium landmarks in 207 consecutive patients using white light examination. A sub-study was also performed using white light followed by endoscopic ultrasound(EUS) in 25 consecutive patients to confirm the findings.The scope orientation throughout the exam was maintained at the natural axis,where the left esophageal quadrant corresponds to the area between 6 and 9 o'clock. When an anatomical landmark was identified, it was recorded with a photograph and its quadrant orientation and distance from the incisors were determined. The reference points to obtain the distances and radial orientation were as follows: the midpoint of the left main bronchus and the most intense pulsatile zone of the left atrium. With the video processor system set to moderate insufflation, measurements were obtained at the end of the patients' air expiration.RESULTS The left main bronchus and left atrium esophageal landmarks were identified using white light in 99% and 100% of subjects at a mean distance of 25.8 cm(SD2.3), and 31.4 cm(SD 2.4) from the incisors, respectively. The left main bronchus landmark was found to be a tubular, concave, non-pulsatile, esophageal external compression, occupying approximately 1/4 of the circumference. The left atrium landmark was identified as a round, convex, pulsatile, esophageal external compression, occupying approximately 1/4 of the circumference. Both landmarks were identified using white light on the anterior esophageal quadrant. In the substudy, the left main bronchus was identified in 24(92%) patients at 25.4 cm(SD2.1) and 26.7 cm(SD 1.9) from the incisors, by white light and EUS, respectively.The left atrium was recognized in all patients at 30.5 cm(SD 1.9), and 31.6 cm(SD2.3) from the incisors, by both white light and EUS, respectively. EUS confirmed that the landmarks corresponded to these two structures, respectively, and that they were located on the anterior esophageal wall. The Bland-Altman plot demonstrated high agreement between the white light and EUS measurements.CONCLUSION This study provides an endoscopic characterization of esophageal landmarks corresponding to the left main bronchus and left atrium, to permit radial and longitudinal orientation and accurate lesion location.展开更多
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo...An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.展开更多
Existing IP geolocation algorithms based on delay similarity often rely on the principle that geographically adjacent IPs have similar delays.However,this principle is often invalid in real Internet environment,which ...Existing IP geolocation algorithms based on delay similarity often rely on the principle that geographically adjacent IPs have similar delays.However,this principle is often invalid in real Internet environment,which leads to unreliable geolocation results.To improve the accuracy and reliability of locating IP in real Internet,a street-level IP geolocation algorithm based on landmarks clustering is proposed.Firstly,we use the probes to measure the known landmarks to obtain their delay vectors,and cluster landmarks using them.Secondly,the landmarks are clustered again by their latitude and longitude,and the intersection of these two clustering results is taken to form training sets.Thirdly,we train multiple neural networks to get the mapping relationship between delay and location in each training set.Finally,we determine one of the neural networks for the target by the delay similarity and relative hop counts,and then geolocate the target by this network.As it brings together the delay and geographical coordinates clustering,the proposed algorithm largely improves the inconsistency between them and enhances the mapping relationship between them.We evaluate the algorithm by a series of experiments in Hong Kong,Shanghai,Zhengzhou and New York.The experimental results show that the proposed algorithm achieves street-level IP geolocation,and comparing with existing typical streetlevel geolocation algorithms,the proposed algorithm improves the geolocation reliability significantly.展开更多
The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean port...The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean portraits where elements like the“Gat”(a traditional Korean hat)are prevalent.This paper proposes a deep learning network designed to perform style transfer that includes the“Gat”while preserving the identity of the face.Unlike traditional style transfer techniques,the proposed method aims to preserve the texture,attire,and the“Gat”in the style image by employing image sharpening and face landmark,with the GAN.The color,texture,and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16,and only the necessary elements during training were preserved using a facial landmark mask.The head area was presented using the eyebrow area to transfer the“Gat”.Furthermore,the identity of the face was retained,and style correlation was considered based on the Gram matrix.To evaluate performance,we introduced a metric using PSNR and SSIM,with an emphasis on median values through new weightings for style transfer in Korean portraits.Additionally,we have conducted a survey that evaluated the content,style,and naturalness of the transferred results,and based on the assessment,we can confidently conclude that our method to maintain the integrity of content surpasses the previous research.Our approach,enriched by landmarks preservation and diverse loss functions,including those related to“Gat”,outperformed previous researches in facial identity preservation.展开更多
In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers ...In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision.展开更多
文摘This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.
基金supported by the National Natural Science Foundation of China(NSFC,No30800102)Natural Science Foundation of Hainan Province(309026)
文摘In order to study the relationship between landmarks and spatial memory in short-nosed fruit bat, Cynopterus sphinx (Megachiroptera, Pteropodidae), we simulated a foraging environment in the laboratory. Different landmarks were placed to gauge the spatial memory of C. sphinx. We changed the number of landmarks every day with 0 landmarks again on the fifth day (from 0, 2, 4, 8 to 0). Individuals from the control group were exposed to the identical artificial foraging environment, but without landmarks. The results indicated that there was significant correlation between the time of the first foraging and the experimental days in both groups (Pearson Correlation: experimental group: r=-0.593, P〈0.01; control group: r=-0.581, P〈0.01). There was no significant correlation between the success rates of foraging and the experimental days in experimental groups (Pearson Correlation: r=0.177, P〉0.05), but there was significant correlation between the success rates of foraging and the experimental days in the control groups (Pearson Correlation: r=0.445, P〈0.05). There was no significant difference for the first foraging time between experimental and control groups (GLM: F0.05,1=4.703, P〉0.05); also, there was no significant difference in success rates of foraging between these two groups (GLM: F0.05,1=0.849,P〉0.05). The results of our experiment suggest that spatial memory in C. sphinx was formed gradually and that the placed landmarks appeared to have no discernable effects on the memory of the foraging space.
基金supported by the National Key Research and Development Program of China (No. 2019YFC1509701)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (No. 2019QZKK0904)+1 种基金the National Natural Science Foundation of China (No. 42107184)the China Postdoctoral Science Foundation (No. 2018M640181)
文摘Despite extensive investigations,no precursor patterns for reliably predicting major earthquakes have thus far been identified.Seismogenic locked segments that can accumulate adequate strain energy to cause major earthquakes are highly heterogeneous and low brittle.The progressive cracking of the locked segments with these properties can produce an interesting seismic phenomenon:a landmark earthquake and a sequence of smaller subsequent earthquakes(pre-shocks)always arise prior to another landmark earthquake within a well-defined seismic zone and its current seismic period.Applying a mechanical model,magnitude constraint conditions,and case study data of 62 worldwide seismic zones,we show that two adjacent landmark earthquakes reliably occur at the volume-expansion point and peak-stress point(rupture)of a locked segment;thus,the former is an identified precursor for the latter.Such a precursor seismicity pattern before the locked-segment rupture has definite physical meanings,and it is universal regardless of the focal depth.Because the evolution of landmark earthquakes follows a deterministic rule described by the model,they are predictable.The results of this study lay a firm physical foundation for reliably predicting the occurrence of future landmark earthquakes in a seismic zone and can greatly improve our understanding of earthquake generation mechanism.
基金partially sponsored by National Key Project of China (No.2012ZX03001013-003)
文摘In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.
基金This research was supported by National Natural Science Foundation of China(Nos.U1913603,61803251,51775322)National Key Research and Development Program of China(No.2019YFB1310003).
文摘The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.
基金supported by grants from National Natural Sciences Foundation of China (No. 30801314)China Hubei Provincial Science and Technology Department (No.2008CBD088)
文摘The accuracy and repeatability of computer aided cervical vertebra landmarking (CACVL) were investigated in cephalogram.120 adolescents (60 boys,60 girls) aged from 9.1 to 17.2 years old were randomly selected.Twenty-seven landmarks from the second to fifth cervical vertebrae on the lat-eral cephalogram were identified.In this study,the system of CACVL was developed and used to iden-tify and calculate the landmarks by fast marching method and parabolic curve fitting.The accuracy and repeatability in CACVL group were compared with those in two manual landmarking groups [orthodon-tic experts (OE) group and orthodontic novices (ON) group].The results showed that,as for the accu-racy,there was no significant difference between CACVL group and OE group no matter in x-axis or y-axis (P>0.05),but there was significant difference between CACVL group and ON group,as well as OE group and ON group in both axes (P<0.05).As for the repeatability,CACVL group was more reli-able than OE group and ON group in both axes.It is concluded that CACVL has the same or higher ac-curacy,better repeatability and less workload than manual landmarking methods.It’s reliable for cervi-cal parameters identification on the lateral cephalogram and cervical vertebral maturation prediction in orthodontic practice and research.
基金The work presented in this paper is supported by the National Key R&D Program of China[Nos.2016YFB0801303,2016QY01W0105]the National Natural Science Foundation of China[Nos.U1636219,U1804263,61602508,61772549,U1736214,61572052]Plan for Scientific Innovation Talent of Henan Province[No.2018JR0018].
文摘High-density street-level reliable landmarks are one of the important foundations for street-level geolocation.However,the existing methods cannot obtain enough street-level landmarks in a short period of time.In this paper,a street-level landmarks acquisition method based on SVM(Support Vector Machine)classifiers is proposed.Firstly,the port detection results of IPs with known services are vectorized,and the vectorization results are used as an input of the SVM training.Then,the kernel function and penalty factor are adjusted for SVM classifiers training,and the optimal SVM classifiers are obtained.After that,the classifier sequence is constructed,and the IPs with unknown service are classified using the sequence.Finally,according to the domain name corresponding to the IP,the relationship between the classified server IP and organization name is established.The experimental results in Guangzhou and Wuhan city in China show that the proposed method can be as a supplement to existing typical methods since the number of obtained street-level landmarks is increased substantially,and the median geolocation error using evaluated landmarks is reduced by about 2 km.
基金(in part)a grant in aid from the Emura Foundation for the Promotion of Cancer Research,No.01221
文摘AIM To characterize esophageal endoluminal landmarks to permit radial and longitudinal esophageal orientation and accurate lesion location.METHODS Distance from the incisors and radial orientation were estimated for the main left bronchus and the left atrium landmarks in 207 consecutive patients using white light examination. A sub-study was also performed using white light followed by endoscopic ultrasound(EUS) in 25 consecutive patients to confirm the findings.The scope orientation throughout the exam was maintained at the natural axis,where the left esophageal quadrant corresponds to the area between 6 and 9 o'clock. When an anatomical landmark was identified, it was recorded with a photograph and its quadrant orientation and distance from the incisors were determined. The reference points to obtain the distances and radial orientation were as follows: the midpoint of the left main bronchus and the most intense pulsatile zone of the left atrium. With the video processor system set to moderate insufflation, measurements were obtained at the end of the patients' air expiration.RESULTS The left main bronchus and left atrium esophageal landmarks were identified using white light in 99% and 100% of subjects at a mean distance of 25.8 cm(SD2.3), and 31.4 cm(SD 2.4) from the incisors, respectively. The left main bronchus landmark was found to be a tubular, concave, non-pulsatile, esophageal external compression, occupying approximately 1/4 of the circumference. The left atrium landmark was identified as a round, convex, pulsatile, esophageal external compression, occupying approximately 1/4 of the circumference. Both landmarks were identified using white light on the anterior esophageal quadrant. In the substudy, the left main bronchus was identified in 24(92%) patients at 25.4 cm(SD2.1) and 26.7 cm(SD 1.9) from the incisors, by white light and EUS, respectively.The left atrium was recognized in all patients at 30.5 cm(SD 1.9), and 31.6 cm(SD2.3) from the incisors, by both white light and EUS, respectively. EUS confirmed that the landmarks corresponded to these two structures, respectively, and that they were located on the anterior esophageal wall. The Bland-Altman plot demonstrated high agreement between the white light and EUS measurements.CONCLUSION This study provides an endoscopic characterization of esophageal landmarks corresponding to the left main bronchus and left atrium, to permit radial and longitudinal orientation and accurate lesion location.
文摘An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.
基金the National Key R&D Program of China 2016YFB0801303(F.L.received the grant,the sponsors’website is https://service.most.gov.cn/)by the National Key R&D Program of China 2016QY01W0105(X.L.received the grant,the sponsors’website is https://service.most.gov.cn/)+5 种基金by the National Natural Science Foundation of China U1636219(X.L.received the grant,the sponsors’website is http://www.nsfc.gov.cn/)by the National Natural Science Foundation of China 61602508(J.L.received the grant,the sponsors’website is http://www.nsfc.gov.cn/)by the National Natural Science Foundation of China 61772549(F.L.received the grant,the sponsors’website is http://www.nsfc.gov.cn/)by the National Natural Science Foundation of China U1736214(F.L.received the grant,the sponsors’website is http://www.nsfc.gov.cn/)by the National Natural Science Foundation of China U1804263(X.L.received the grant,the sponsors’website is http://www.nsfc.gov.cn/)by the Science and Technology Innovation Talent Project of Henan Province 184200510018(X.L.received the grant,the sponsors’website is http://www.hnkjt.gov.cn/).
文摘Existing IP geolocation algorithms based on delay similarity often rely on the principle that geographically adjacent IPs have similar delays.However,this principle is often invalid in real Internet environment,which leads to unreliable geolocation results.To improve the accuracy and reliability of locating IP in real Internet,a street-level IP geolocation algorithm based on landmarks clustering is proposed.Firstly,we use the probes to measure the known landmarks to obtain their delay vectors,and cluster landmarks using them.Secondly,the landmarks are clustered again by their latitude and longitude,and the intersection of these two clustering results is taken to form training sets.Thirdly,we train multiple neural networks to get the mapping relationship between delay and location in each training set.Finally,we determine one of the neural networks for the target by the delay similarity and relative hop counts,and then geolocate the target by this network.As it brings together the delay and geographical coordinates clustering,the proposed algorithm largely improves the inconsistency between them and enhances the mapping relationship between them.We evaluate the algorithm by a series of experiments in Hong Kong,Shanghai,Zhengzhou and New York.The experimental results show that the proposed algorithm achieves street-level IP geolocation,and comparing with existing typical streetlevel geolocation algorithms,the proposed algorithm improves the geolocation reliability significantly.
基金supported by Metaverse Lab Program funded by the Ministry of Science and ICT(MSIT),and the Korea Radio Promotion Association(RAPA).
文摘The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean portraits where elements like the“Gat”(a traditional Korean hat)are prevalent.This paper proposes a deep learning network designed to perform style transfer that includes the“Gat”while preserving the identity of the face.Unlike traditional style transfer techniques,the proposed method aims to preserve the texture,attire,and the“Gat”in the style image by employing image sharpening and face landmark,with the GAN.The color,texture,and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16,and only the necessary elements during training were preserved using a facial landmark mask.The head area was presented using the eyebrow area to transfer the“Gat”.Furthermore,the identity of the face was retained,and style correlation was considered based on the Gram matrix.To evaluate performance,we introduced a metric using PSNR and SSIM,with an emphasis on median values through new weightings for style transfer in Korean portraits.Additionally,we have conducted a survey that evaluated the content,style,and naturalness of the transferred results,and based on the assessment,we can confidently conclude that our method to maintain the integrity of content surpasses the previous research.Our approach,enriched by landmarks preservation and diverse loss functions,including those related to“Gat”,outperformed previous researches in facial identity preservation.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University,National Science Foundation of China(61105092)the National Natural Science Foundation of China(61473042)
文摘In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision.