We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and ...We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.展开更多
The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxation...The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.展开更多
This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wa...This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.展开更多
The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression ...The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q →1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.展开更多
The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a c...The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate.The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers.The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations.The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface.The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.展开更多
Bulk ion heating rate from nonlinear Landau damping of high mode number Toroidal Alfven Eigenmodes (TAEs) is calculated in the frame work of weak turbulence theory. The heating rate is lower than the nonlinear spect...Bulk ion heating rate from nonlinear Landau damping of high mode number Toroidal Alfven Eigenmodes (TAEs) is calculated in the frame work of weak turbulence theory. The heating rate is lower than the nonlinear spectral transfer rate to more stable modes, but relatively insensitive to the details of linear damping mechanisms.展开更多
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold p...In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.展开更多
The Landau damping behavior in a cylindrical inhomogeneous warm magnetized plasma waveguide has been studied.The radial inhomogeneity for different characteristic lengths(L0) with strong spatial dispersion has been ...The Landau damping behavior in a cylindrical inhomogeneous warm magnetized plasma waveguide has been studied.The radial inhomogeneity for different characteristic lengths(L0) with strong spatial dispersion has been taken into account.The analyses have been considered for two limits ωce 〈 ωpe and ωce 〉 ωpe. Due to the radial inhomogeneity of the plasma, all essential equations for studying the Landau damping are calculated in the Bessel–Furrier and differential Bessel–Furrier expansions. The dependence of Landau damping on the inhomogeneity, temperature and external magnetic field for electrostatic modes is scrutinized and described in detail through numerical calculations. The associated numerical results are presented and discussed.展开更多
Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic she...Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic shear (EMS), and pressure flattening. It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field. Moreover, the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime. In addition, the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode, while it has different local effects near the O-point and the X-point regions. In comparison with the non-zero-order perturbations, only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode.展开更多
Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combinin...Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.展开更多
The consideration of orbital angular momentum of an electric field(twisted mode)is applied to the kinetic theory of plasma.The linearized Vlasov–Poisson equation is solved for the anisotropic thermal distributed bi-M...The consideration of orbital angular momentum of an electric field(twisted mode)is applied to the kinetic theory of plasma.The linearized Vlasov–Poisson equation is solved for the anisotropic thermal distributed bi-Maxwellian and Cairns distributions of electrons to obtain the damping rates of twisted waves.The dispersion relation and Landau damping of Langmuir twisted modes are obtained.The presence of twisted modes opens up two more possibilities in Landau damping and dispersion relations.This may generate a mixture with ion sound waves.It seems to play the role of a control parameter of Landau damping.展开更多
Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations ...Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations can be generated to alter the wave damping/growth rate. In this paper, we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found. The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized (r, q) distribution function, which is the generalized form of the kappa and Maxwellian distribution functions. In the limiting case of r = 0 and q→∞, it reduces to the classical Maxwellian distribution function, and when r = 0 and q→k +1, it reduces to the kappa distribution function.展开更多
By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit wh...By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.展开更多
We investigate the Landau damping of the collective mode in a quasi-one-dimensional repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hartree-Fock-Bogoliubov approximation.We put forward a...We investigate the Landau damping of the collective mode in a quasi-one-dimensional repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hartree-Fock-Bogoliubov approximation.We put forward a new method to calculate the Landau damping rate of the collective mode in the condensate and discuss the dependence of the Landau damping on temperature,on transverse trapping frequency,on atom number in the condensate,and on length of the system.Different from the usual calculation method for the three dimension system,our new calculation method is an interactive one by considering the practical relaxation of the elementary excitation.With little approximation,our theoretical calculation results agree with the experimental ones.Comparing with the usual calculation method,our theory is helpful to deduce the inter-particle interactions in damping phenomenon.展开更多
By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which ...By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which the Landau damping is stopped after a certain damping stage, is studied. It is found that the critical initial amplitude e* can only exist when the product of the wave number (k~) and the electron thermal velocity (vth) is moderate, that is, 0.2 〈 k^vth 〈 0.7. Otherwise, no critical initial amplitude is found. The value c* increases with the increase in km for a fixed Vth, and also increases with the increase in Vth for a fixed kin. When kmVth is fixed, the value s* also changes with the wave number and the electron thermal velocity, even though the damping rate and the oscillation frequency are the same in this case.展开更多
Preliminary simulation results obtained with the code developed for ion Bernstein wave (IBW) heating in the HT-7 tokamak are presented. Comparison of the simulation of IBW heating and an HT-7 experiment confirms tha...Preliminary simulation results obtained with the code developed for ion Bernstein wave (IBW) heating in the HT-7 tokamak are presented. Comparison of the simulation of IBW heating and an HT-7 experiment confirms that using IBW of various frequencies can result in local or global plasma heating. The studies suggest that IBW absorption by ions near the ion cyclotron resonant layer and by electrons via electron Landau damping (ELD) around the maximum of n// offers a possible mechanism of plasma heating.展开更多
The Landau damping which reveals the characteristic of relaxation dynamics for an equilibrium state is a universal concept in the area of complex system. In this paper, we study the Landau damping in the phase oscilla...The Landau damping which reveals the characteristic of relaxation dynamics for an equilibrium state is a universal concept in the area of complex system. In this paper, we study the Landau damping in the phase oscillator system by considering two types of coupling heterogeneity in the Kuramoto model. We show that the critical coupling strength for phase transition, which can be obtained analytically through the balanced integral equation, has the same formula for both cases. The Landau damping effects are further explained in the framework of Laplace transform, where the order parameters decay to zero in the long time limit.展开更多
In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The recons...In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume(FV)WENO scheme[3].However,instead of inputting cell averages and approximate the integral form of the equation in a FV scheme,we input point values and approximate the differential form of equation in a FD spirit,yet retaining very high order(fifth order in our experiment)spatial accuracy.The advantage of using point values,rather than cell averages,is to avoid the second order spatial error,due to the shearing in velocity(v)and electrical field(E)over a cell when performing the Strang splitting to the Vlasov equation.As a result,the proposed scheme has very high spatial accuracy,compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson(VP)system.We perform numerical experiments on linear advection,rigid body rotation problem;and on the Landau damping and two-stream instabilities by solving the VP system.For comparison,we also apply(1)the conservative SL FD WENO scheme,proposed in[22]for incompressible advection problem,(2)the conservative SL FD WENO scheme proposed in[21]and(3)the non-conservative version of the SL FD WENO scheme in[3]to the same test problems.The performances of different schemes are compared by the error table,solution resolution of sharp interface,and by tracking the conservation of physical norms,energies and entropies,which should be physically preserved.展开更多
We investigate the photon polarization tensor at finite temperatures in the presence of a static and homogeneous external magnetic field.In our scheme,the summing of the Matsubara frequency is performed after Poisson ...We investigate the photon polarization tensor at finite temperatures in the presence of a static and homogeneous external magnetic field.In our scheme,the summing of the Matsubara frequency is performed after Poisson resummation,which is easily completed and converges quickly.Moreover,the behaviors of finite Landau levels are presented explicitly.It shows a convergence while summing infinite Landau levels.Consequently,there is no necessity to truncate the Landau level in a numerical estimation.At zero temperature,the lowest Landau level(LLL)approximation is analytically satisfied for the vacuum photon polarization tensor.However,we examine that the LLL approximation is not enough for the thermal polarization tensor.The thermal tensor obtains non-trivial contributions from the finite-n Landau levels.And,photon spectra gains a large imaginary contribution in thermal medium,which is the so-called Landau damping.Finally,it is argued that the summation of Matsubara frequency is not commuted with Landau level ones,such conjecture is excluded in our calculations.展开更多
In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. In...In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No.10864006)the Key Research Project of Xinjiang Higher Education,China (Grant No.XJED2010141),the Key Discipline of Theoretical Physics of Xinjiang,China,and the Prior Development Subject of Theoretical Physics of Xinjiang Normal University,China
文摘We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.
基金supported by the National Natural Science Foundation of China(Grant No.11264039)the Key Discipline of Theoretical Physics of Xinjiang,China(Grant Nos.LLWLY201202 and LLWLY201203)the Postgraduate Scientific and Theoretical Innovation Project of Xinjiang Normal University,China(Grant No.20131234)
文摘The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 90403008 and 10434060), and State Key Development Program for Basic Research of China (Grant No 2005CB724508).
文摘This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10963002)the International S & T Cooperation Program of China and Jiangxi Province (Grant No. 2009DFA02320)+1 种基金the Program for Innovative Research Team of Nanchang Universitythe National Basic Research Program of China (Grant No. 2010CB635112)
文摘The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q →1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.
文摘The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate.The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers.The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations.The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface.The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.
基金supported by the Seoul National University Research GrantR&D Program through the National Fusion Research Institute of Korea(NFRI) Funded by the Government Funds
文摘Bulk ion heating rate from nonlinear Landau damping of high mode number Toroidal Alfven Eigenmodes (TAEs) is calculated in the frame work of weak turbulence theory. The heating rate is lower than the nonlinear spectral transfer rate to more stable modes, but relatively insensitive to the details of linear damping mechanisms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40931054)the National Basic Research Program of China (Grant No. 2011CB811404)the Higher Education Commission of China (Grant No. 20-1886/R&D/10)
文摘In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.
文摘The Landau damping behavior in a cylindrical inhomogeneous warm magnetized plasma waveguide has been studied.The radial inhomogeneity for different characteristic lengths(L0) with strong spatial dispersion has been taken into account.The analyses have been considered for two limits ωce 〈 ωpe and ωce 〉 ωpe. Due to the radial inhomogeneity of the plasma, all essential equations for studying the Landau damping are calculated in the Bessel–Furrier and differential Bessel–Furrier expansions. The dependence of Landau damping on the inhomogeneity, temperature and external magnetic field for electrostatic modes is scrutinized and described in detail through numerical calculations. The associated numerical results are presented and discussed.
基金supported by National Natural Science Foundation of China with Nos.11305027,11322549 and 11675038National Magnetic Confinement Fusion Science Program of China with No.2014GB124000partly supported by the Fundamental Research Funds for the Central Universities with Grant No.DUT15YQ103
文摘Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic shear (EMS), and pressure flattening. It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field. Moreover, the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime. In addition, the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode, while it has different local effects near the O-point and the X-point regions. In comparison with the non-zero-order perturbations, only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25050700)the National Natural Science Foundation of China(Grant Nos.11805062,11875091 and 11975059)+1 种基金the Science Challenge Project(Grant No.TZ2016005)the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5029)。
文摘Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20183010032380)。
文摘The consideration of orbital angular momentum of an electric field(twisted mode)is applied to the kinetic theory of plasma.The linearized Vlasov–Poisson equation is solved for the anisotropic thermal distributed bi-Maxwellian and Cairns distributions of electrons to obtain the damping rates of twisted waves.The dispersion relation and Landau damping of Langmuir twisted modes are obtained.The presence of twisted modes opens up two more possibilities in Landau damping and dispersion relations.This may generate a mixture with ion sound waves.It seems to play the role of a control parameter of Landau damping.
基金Project supported by the Pakistan Science Foundation Project No.PSF/Res/P-GCU/Phys.(143)the National Natural Science Foundation of China(Grant Nos.41074114 and 41274146)the Specialized Research Fund for State Key Laboratories of China
文摘Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations can be generated to alter the wave damping/growth rate. In this paper, we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found. The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized (r, q) distribution function, which is the generalized form of the kappa and Maxwellian distribution functions. In the limiting case of r = 0 and q→∞, it reduces to the classical Maxwellian distribution function, and when r = 0 and q→k +1, it reduces to the kappa distribution function.
文摘By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.
基金Supported by National Natural Science Foundation of China under Grant No.10864006the Key Research Project of Xinjiang Higher Education,China under Grant No.XJED2010141the Key Discipline of Theoretical Physics of Xinjiang,China and the Postgraduate Scientific and Technological Innovation Project of Xinjiang Normal University,China under Grant No.20111202
文摘We investigate the Landau damping of the collective mode in a quasi-one-dimensional repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hartree-Fock-Bogoliubov approximation.We put forward a new method to calculate the Landau damping rate of the collective mode in the condensate and discuss the dependence of the Landau damping on temperature,on transverse trapping frequency,on atom number in the condensate,and on length of the system.Different from the usual calculation method for the three dimension system,our new calculation method is an interactive one by considering the practical relaxation of the elementary excitation.With little approximation,our theoretical calculation results agree with the experimental ones.Comparing with the usual calculation method,our theory is helpful to deduce the inter-particle interactions in damping phenomenon.
基金supported by National Natural Science Foundation of China (Nos.11147025, 10947108, 11075105)the National Basic Research Program of China (No.2009GB105002)+1 种基金the Natural Science Foundation of Shandong Province of China (No.Q2008A05)the Foundation of Qufu Normal University of China (No.BSQD09011)
文摘By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which the Landau damping is stopped after a certain damping stage, is studied. It is found that the critical initial amplitude e* can only exist when the product of the wave number (k~) and the electron thermal velocity (vth) is moderate, that is, 0.2 〈 k^vth 〈 0.7. Otherwise, no critical initial amplitude is found. The value c* increases with the increase in km for a fixed Vth, and also increases with the increase in Vth for a fixed kin. When kmVth is fixed, the value s* also changes with the wave number and the electron thermal velocity, even though the damping rate and the oscillation frequency are the same in this case.
基金supported by National Natural Science Foundation of China (No. 10205015)
文摘Preliminary simulation results obtained with the code developed for ion Bernstein wave (IBW) heating in the HT-7 tokamak are presented. Comparison of the simulation of IBW heating and an HT-7 experiment confirms that using IBW of various frequencies can result in local or global plasma heating. The studies suggest that IBW absorption by ions near the ion cyclotron resonant layer and by electrons via electron Landau damping (ELD) around the maximum of n// offers a possible mechanism of plasma heating.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11905068,11847013,11175150,and 11605055)Postgraduate Research and Practice Innovation Project for Graduate Students of Jiang Su Province,China(Grant No.KYCX18-2100)the Scientific Research Funds of Huaqiao University,China(Grant No.605-50Y17064)
文摘The Landau damping which reveals the characteristic of relaxation dynamics for an equilibrium state is a universal concept in the area of complex system. In this paper, we study the Landau damping in the phase oscillator system by considering two types of coupling heterogeneity in the Kuramoto model. We show that the critical coupling strength for phase transition, which can be obtained analytically through the balanced integral equation, has the same formula for both cases. The Landau damping effects are further explained in the framework of Laplace transform, where the order parameters decay to zero in the long time limit.
基金supported by AFOSR grant FA9550-09-1-0344 and NSF grant DMS-0914852supported by AFOSR grant FA9550-09-1-0126 and NSF grant DMS-0809086.
文摘In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume(FV)WENO scheme[3].However,instead of inputting cell averages and approximate the integral form of the equation in a FV scheme,we input point values and approximate the differential form of equation in a FD spirit,yet retaining very high order(fifth order in our experiment)spatial accuracy.The advantage of using point values,rather than cell averages,is to avoid the second order spatial error,due to the shearing in velocity(v)and electrical field(E)over a cell when performing the Strang splitting to the Vlasov equation.As a result,the proposed scheme has very high spatial accuracy,compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson(VP)system.We perform numerical experiments on linear advection,rigid body rotation problem;and on the Landau damping and two-stream instabilities by solving the VP system.For comparison,we also apply(1)the conservative SL FD WENO scheme,proposed in[22]for incompressible advection problem,(2)the conservative SL FD WENO scheme proposed in[21]and(3)the non-conservative version of the SL FD WENO scheme in[3]to the same test problems.The performances of different schemes are compared by the error table,solution resolution of sharp interface,and by tracking the conservation of physical norms,energies and entropies,which should be physically preserved.
基金supported by the Major State Basic Research Development Program in,China(No.2015CB856903)supported by the NSFC under Grant Nos.11725523,11735007 and 11261130311(CRC 110 by DFG and NSFC)。
文摘We investigate the photon polarization tensor at finite temperatures in the presence of a static and homogeneous external magnetic field.In our scheme,the summing of the Matsubara frequency is performed after Poisson resummation,which is easily completed and converges quickly.Moreover,the behaviors of finite Landau levels are presented explicitly.It shows a convergence while summing infinite Landau levels.Consequently,there is no necessity to truncate the Landau level in a numerical estimation.At zero temperature,the lowest Landau level(LLL)approximation is analytically satisfied for the vacuum photon polarization tensor.However,we examine that the LLL approximation is not enough for the thermal polarization tensor.The thermal tensor obtains non-trivial contributions from the finite-n Landau levels.And,photon spectra gains a large imaginary contribution in thermal medium,which is the so-called Landau damping.Finally,it is argued that the summation of Matsubara frequency is not commuted with Landau level ones,such conjecture is excluded in our calculations.
基金Supported by National Natural Science Foundation of China(10979045,11175180,11175182)
文摘In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.