期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Salinity on Reeds in the Treatment of High Salinity LandfilI-Leachates Using HFs
1
作者 Tokuo Yano Mika Okanuma Yoshiki Kumagai Kazuaki Sato Akiko Inoue-Kohama Keijiro Enari 《Journal of Environmental Science and Engineering(B)》 2014年第3期142-150,共9页
The growth of reeds was impeded remarkably under a salinity of 15.0±3.4 g CI·L-1 in the first year of this experiment, recovered in the second year and then increased year-by-year afterward. The growth of re... The growth of reeds was impeded remarkably under a salinity of 15.0±3.4 g CI·L-1 in the first year of this experiment, recovered in the second year and then increased year-by-year afterward. The growth of reeds under a salinity of 9.3±1.9 g CI·Ll was much better than those under 15.0 ± 3.4 g CI·L1. The stress effect was significant for shoot extension but not for the quantity of shoots increase. The dense vegetation bed during the vegetation period (June-October) provided a high rate of evapotranspiration and water loss from HFs (horizontal subsurface flow constructed wetlands), which made large contributions to reducing pollutant load. The HFs with die-back reeds in the non-vegetation periods (November-March) provided slight evapotranspiration and water loss and made less of a contribution to reducing pollutants removal compared to HFs with the dense vegetation bed in the vegetation periods. However, the HFs with die-back reeds in the non-vegetation periods had higher removal performance than the HF without reeds. This indicated that the rhizosphere of HFs with reeds might play important roles, such as that the microbes around rhizomes might have a higher amount of pollutant-removing microbe activity than those in the HF without reeds during the non-vegetation period. 展开更多
关键词 landfill-leachate HIGH-SALINITY HFs reeds effect.
下载PDF
Evapotranspiration and Removal Performance in the Treatment of High Salinity LandfilI-Leachate Using HSF
2
作者 Tokuo Yano Kazuhiro Yamada +3 位作者 Masatomo Nakayama Akiko Inoue-kohama Shinya Sato Keijiro Enari 《Journal of Environmental Science and Engineering(B)》 2016年第9期440-450,共11页
In this study, the water budget in the treatment of high salinity landfill-leachate was estimated and the influence of evapotranspiration (ET) on treatment performance was investigated. The salinity of the inside of... In this study, the water budget in the treatment of high salinity landfill-leachate was estimated and the influence of evapotranspiration (ET) on treatment performance was investigated. The salinity of the inside of horizontal subsurface flow constructed wetland (HSF) of the raw leachate inflow was 15.0± 3.4 g.Cl/L which was in the level of the salinity of the survival limit of reed, and that of the double diluted leachate inflow was 9.3 ± 1.9 g.CI7L. There were large differences in the vegetation between HSF of the raw leachate inflow and that of the double diluted leachate inflow. The dense vegetation bed of double diluted leachate inflow during the growing season (April-October) provided a high ET and a large water loss, which made great contributions to the reduction of the outflow load of COD and T-N. The HSF with die-back reeds in the non-growing season (November-March) provided a slight ET and a small water loss and made less of a contribution to pollutant removal compared to the HSF with dense vegetation bed during the growing season. However, the HSF with die-back reeds during the non-growing season exhibited higher removal performance than the unplanted HSF. 展开更多
关键词 EVAPOTRANSPIRATION HSF high salinity landfill-leachate removal performance water budget.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部