The intensity, landing time, track trend and intensity variation of tropical cyclones (TCs) afterlandfall are analyzed using the TCs data (of best track from the China Meteorological Administration)between 1949 and 20...The intensity, landing time, track trend and intensity variation of tropical cyclones (TCs) afterlandfall are analyzed using the TCs data (of best track from the China Meteorological Administration)between 1949 and 2006 for the western North Pacific and South China Sea. The trend differences of trackand intensity between the TCs that directly land in East China and those making the second landfall in EastChina after landing in Taiwan Island are categorically discussed. The results show that the first kind oflanding TCs are more likely to go northward or turn while the second kind of TCs have a larger tendency tokeep going northwest. The intensity of the first kind of TCs is more persistent than the second one. There isa higher percentage for the intensity to be weakened significantly if the TCs keep going west to northwest orsouthwest after landing.展开更多
A squall line in front of the tropical cyclone Pabuk occurred in the west of the Pearl River Delta to Zhanjiang on August 8th, 2007 when the storm approached South China. The development, structure and environmental c...A squall line in front of the tropical cyclone Pabuk occurred in the west of the Pearl River Delta to Zhanjiang on August 8th, 2007 when the storm approached South China. The development, structure and environmental conditions for this squall line were investigated in this study, with particular attention paid to the possible connection of this squall line with Pabuk. The observational data employed in this study are from soundings, Doppler weather radars and wind profile radars. The following six major conclusions are drawn by our observational analyses.(1) This squall line developed gradually from individual convective cells, and land breeze may be responsible for the onset of the squall line.(2) The path and intensity of the squall line were modulated by the environmental conditions. The squall line propagated along the coastline, and it was stronger on the landing side of the coastline compared with the surrounding in-land regions and oceanic regions.(3) The typical characteristics of tropical squall lines were seen in this squall line,including the cold-pool intensity, vertical structure and the wake flow stratiform precipitation at its developing and mature phases.(4) The environmental conditions of this squall line resemble those of tropical squall lines in terms of deep moist air and low convection condensation level. They also resemble mid-latitude squall lines in terms of the convective instable energy and vertical wind shear in the lower troposphere.(5) Two roles were played by the strong wind around Pabuk. On the one hand, it made the atmosphere more unstable via suppressed shallow convection and increased solar radiation. On the other hand, it enhanced the land-sea thermal contrast and therefore strengthened the sea breeze and the resultant water vapor transport. The sinking temperature inversion prevented the occurrence of low-layer weak convection and accumulated convection instability energy for the development of the strong convection.展开更多
Analysis is done of monthly and seasonal variations as climatic features of the tracks from 1196 tropical cyclones originating in the western North Pacific over the period 1949 to 1980, followed by the investigation o...Analysis is done of monthly and seasonal variations as climatic features of the tracks from 1196 tropical cyclones originating in the western North Pacific over the period 1949 to 1980, followed by the investigation of 301 onland cyclone tracks over China mainland in terms of methodology for nonlinear system. Obtained by computing the accumulated distance distribution function of the tracks Cm (l) is the characteristic chaos quantity for the related dynamic systems and then the fractual dimensionality d = 4.86 and Kolmogorov entropy approximation K2 = 0.0164, thereby leading to the predictability time scale = 2.54 days. It is found that the reference path among the onland typhoon No.23 of 1971, or Bess in the international nomenclature. Our results could be of operational use as a kind of reference.展开更多
A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tr...A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.展开更多
Many studies have explored the importance and influence of planetary boundary layer processes on tropical cyclones (TCs). However, few studies have focused on the influence of land surface processes on the activity of...Many studies have explored the importance and influence of planetary boundary layer processes on tropical cyclones (TCs). However, few studies have focused on the influence of land surface processes on the activity of TCs. To test the effect of initial perturbations of land surface processes on TCs, a land surface process perturbation module is built in a global ensemble prediction system. Ensemble experiments for the TCs that occurred from 12 UTC 22 August to 18 UTC 24 November, 2006 show that consideration of the uncertainties within the land surface process could increase the predictability of the global ensemble prediction system. Detailed analysis on TC Xangsane (2006) indicates that the perturbation of land surface processes may increase the variation of sensible heat flux and latent heat flux. Meanwhile, the effect from land surface perturbation can be transferred to the upper atmosphere, which leads to better TC forecasts.展开更多
Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level...Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.展开更多
On 12 August 2004, Typhoon Rananim (0414) moved inland over China and stagnated over the Poyang Lake area, resulting in torrential rainfall and severe geologic hazards. The Advanced Weather Research and Forecasting ...On 12 August 2004, Typhoon Rananim (0414) moved inland over China and stagnated over the Poyang Lake area, resulting in torrential rainfall and severe geologic hazards. The Advanced Weather Research and Forecasting (ARW-WRF) model and its different land surface models (LSMs) were employed to study the impacts of land surface process on the inland behavior of Typhoon Rananim. Results show that simulations, coupled with LSMs or not, have no significant differences in predicting typhoon track, intensity, and largescale circulation. However, the simulations of mesoscale structure, rainfall rate, and rainfall distribution of typhoon are more reasonable with LSMs than without LSMs. Although differences are slight among LSMs, NOAH is better than the others. Based on outputs using the NOAH scheme, the interaction between land surtace and typhoon was explored in this study. Notably, typhoon rainfall and cloud cover can cool land surface, but rainfall expands the underlying saturated wetland area, which exacerbates the asymmetric distribution of surface heat fluxes. Accordingly, an energy frontal zone may form in the lower troposphere that enhances ascending motion and local convection, resulting in heavier rainfall. Moreover, the expanded underlying saturated wetlands provide plentiful moisture and unstable energy for the maintenance of Typhoon Rananim and increased rainfall in return.展开更多
Application of UAVs (unmanned aerial vehicles) for tropical cyclone missions is an emerging area of research and recent advances include the concept of spinsonde for multi-cycle measurement of vertical wind profile wi...Application of UAVs (unmanned aerial vehicles) for tropical cyclone missions is an emerging area of research and recent advances include the concept of spinsonde for multi-cycle measurement of vertical wind profile within the storm. This work proposes the design of a typhoon UAV as part of a cost-effective approach for acquiring atmospheric data to improve prediction and refine models. Land- and carrier-based flight schemes are proposed in this study and computer simulations are carried out to investigate the flight performance. Results suggest that the UAV achieves a maximum cruising speed in excess of 350 km·h<sup>-1</sup> with excellent spinsonde performance. Furthermore, the UAV is capable of performing high-alpha maneuvers as well as vertical landing, thus rendering it suitable for space-efficient operation whether on land or aircraft carrier.展开更多
The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanie...The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanied with a decrease in low-level wind speed, an expansion of the radius of strong wind, weakening of the upper-level warm core, and drying of the mid-tropospheric air. On average, the warm core of the TCs dissipates 24 h after landfall. The height of the maximum low-level wind and the base of the stable layer both increase with the increased distance to the TC center;however, the former is always higher than the latter. In particular, an asymmetric structure of the TC after landfall is found. The kinematic and thermodynamic structures across various areas of TC circulation diff er, especially over the left-front and right-rear quadrants (relative to the direction of TC motion). In the left-front quadrant, strong winds locate at a smaller radius, the upper-level temperature is warmer with the warm core extending into a deep layer, while the wet air occupies a shallow layer. In the right-rear quadrant, strong wind and wet air dwell in an area that is broader and deeper, and the warmest air is situated farther away from the TC center.展开更多
Tropical cyclone(TC)-related rainfall mostly depends on the atmospheric moisture uptake from local and remote sources.In this study,the mean water vapour residence time(MWVRT)was computed for precipitation related to ...Tropical cyclone(TC)-related rainfall mostly depends on the atmospheric moisture uptake from local and remote sources.In this study,the mean water vapour residence time(MWVRT)was computed for precipitation related to TCs in each basin and on a global scale by applying a Lagrangian moisture source diagnostic method.According to our results,the highest MWVRT was found for the TCs over the South Indian Ocean and South Pacific Ocean basins(~3.08 days),followed by the Western North Pacific Ocean,Central and East North Pacific Ocean,North Indian Ocean,and North Atlantic Ocean basins(which exhibited values of 2.98,2.94,2.85,and 2.72 days,respectively).We also found a statistically significant(p<0.05)decrease in MWVRT,at a rate of~2.4 h/decade in the North Indian Ocean and~1.0 h/decade in the remaining basins.On average,the MWVRT decreased during the 24 h before TCs made landfall,and the atmospheric parcels precipitated faster after evaporation when TCs moved over land than over the ocean.Further research should focus on the relationship between global warming and MWVRT of atmospheric parcels that precipitate over TC positions.展开更多
基金National Basic Research Program of China(2009CB421501)National Natural Science Foundation of China(40921160381)Geographic Information Science Key Laboratory Foundation for Ministry of Education(LGISEM0606)
文摘The intensity, landing time, track trend and intensity variation of tropical cyclones (TCs) afterlandfall are analyzed using the TCs data (of best track from the China Meteorological Administration)between 1949 and 2006 for the western North Pacific and South China Sea. The trend differences of trackand intensity between the TCs that directly land in East China and those making the second landfall in EastChina after landing in Taiwan Island are categorically discussed. The results show that the first kind oflanding TCs are more likely to go northward or turn while the second kind of TCs have a larger tendency tokeep going northwest. The intensity of the first kind of TCs is more persistent than the second one. There isa higher percentage for the intensity to be weakened significantly if the TCs keep going west to northwest orsouthwest after landing.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)
文摘A squall line in front of the tropical cyclone Pabuk occurred in the west of the Pearl River Delta to Zhanjiang on August 8th, 2007 when the storm approached South China. The development, structure and environmental conditions for this squall line were investigated in this study, with particular attention paid to the possible connection of this squall line with Pabuk. The observational data employed in this study are from soundings, Doppler weather radars and wind profile radars. The following six major conclusions are drawn by our observational analyses.(1) This squall line developed gradually from individual convective cells, and land breeze may be responsible for the onset of the squall line.(2) The path and intensity of the squall line were modulated by the environmental conditions. The squall line propagated along the coastline, and it was stronger on the landing side of the coastline compared with the surrounding in-land regions and oceanic regions.(3) The typical characteristics of tropical squall lines were seen in this squall line,including the cold-pool intensity, vertical structure and the wake flow stratiform precipitation at its developing and mature phases.(4) The environmental conditions of this squall line resemble those of tropical squall lines in terms of deep moist air and low convection condensation level. They also resemble mid-latitude squall lines in terms of the convective instable energy and vertical wind shear in the lower troposphere.(5) Two roles were played by the strong wind around Pabuk. On the one hand, it made the atmosphere more unstable via suppressed shallow convection and increased solar radiation. On the other hand, it enhanced the land-sea thermal contrast and therefore strengthened the sea breeze and the resultant water vapor transport. The sinking temperature inversion prevented the occurrence of low-layer weak convection and accumulated convection instability energy for the development of the strong convection.
基金This work is funded by the National Natural Science Foundation of China.
文摘Analysis is done of monthly and seasonal variations as climatic features of the tracks from 1196 tropical cyclones originating in the western North Pacific over the period 1949 to 1980, followed by the investigation of 301 onland cyclone tracks over China mainland in terms of methodology for nonlinear system. Obtained by computing the accumulated distance distribution function of the tracks Cm (l) is the characteristic chaos quantity for the related dynamic systems and then the fractual dimensionality d = 4.86 and Kolmogorov entropy approximation K2 = 0.0164, thereby leading to the predictability time scale = 2.54 days. It is found that the reference path among the onland typhoon No.23 of 1971, or Bess in the international nomenclature. Our results could be of operational use as a kind of reference.
基金Model System for Monitoring the Interactions Between Air-Sea-Land in Coastal Area and Predicting Disaster-Causing Weather by China Meteorological Administration
文摘A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.
基金National Natural Science Foundation of China (4073094841075079)+2 种基金NMC-TIGGE Program(GYHY200706001GYHY200906007)Special Public Welfare Research Fund for Meteorological Profession of CMA (GYHY201006015)
文摘Many studies have explored the importance and influence of planetary boundary layer processes on tropical cyclones (TCs). However, few studies have focused on the influence of land surface processes on the activity of TCs. To test the effect of initial perturbations of land surface processes on TCs, a land surface process perturbation module is built in a global ensemble prediction system. Ensemble experiments for the TCs that occurred from 12 UTC 22 August to 18 UTC 24 November, 2006 show that consideration of the uncertainties within the land surface process could increase the predictability of the global ensemble prediction system. Detailed analysis on TC Xangsane (2006) indicates that the perturbation of land surface processes may increase the variation of sensible heat flux and latent heat flux. Meanwhile, the effect from land surface perturbation can be transferred to the upper atmosphere, which leads to better TC forecasts.
基金Office of Naval Research(N000140810256,N000141010774)National Science Foundation of China(41075037)+2 种基金Japan Agency for Marine-Earth Science and Technology(JAMSTEC)NASA(NNX07AG53G)NOAA(NA17RJ1230)
文摘Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
基金financed by the National Grand Fundamental Research 973 Program of China (Grant No. 2009CB421504)the Natural Science Foundation of China (Grant Nos. 41175063,40975032,and 41275066)
文摘On 12 August 2004, Typhoon Rananim (0414) moved inland over China and stagnated over the Poyang Lake area, resulting in torrential rainfall and severe geologic hazards. The Advanced Weather Research and Forecasting (ARW-WRF) model and its different land surface models (LSMs) were employed to study the impacts of land surface process on the inland behavior of Typhoon Rananim. Results show that simulations, coupled with LSMs or not, have no significant differences in predicting typhoon track, intensity, and largescale circulation. However, the simulations of mesoscale structure, rainfall rate, and rainfall distribution of typhoon are more reasonable with LSMs than without LSMs. Although differences are slight among LSMs, NOAH is better than the others. Based on outputs using the NOAH scheme, the interaction between land surtace and typhoon was explored in this study. Notably, typhoon rainfall and cloud cover can cool land surface, but rainfall expands the underlying saturated wetland area, which exacerbates the asymmetric distribution of surface heat fluxes. Accordingly, an energy frontal zone may form in the lower troposphere that enhances ascending motion and local convection, resulting in heavier rainfall. Moreover, the expanded underlying saturated wetlands provide plentiful moisture and unstable energy for the maintenance of Typhoon Rananim and increased rainfall in return.
文摘Application of UAVs (unmanned aerial vehicles) for tropical cyclone missions is an emerging area of research and recent advances include the concept of spinsonde for multi-cycle measurement of vertical wind profile within the storm. This work proposes the design of a typhoon UAV as part of a cost-effective approach for acquiring atmospheric data to improve prediction and refine models. Land- and carrier-based flight schemes are proposed in this study and computer simulations are carried out to investigate the flight performance. Results suggest that the UAV achieves a maximum cruising speed in excess of 350 km·h<sup>-1</sup> with excellent spinsonde performance. Furthermore, the UAV is capable of performing high-alpha maneuvers as well as vertical landing, thus rendering it suitable for space-efficient operation whether on land or aircraft carrier.
基金Supported by the National Basic Research and Development(973)Program of China(2009CB421500)National Natural Science Foundation of China(40730948,40921160381,41275057,41275067,and 41305049)China Meteorological Administration Special Public Welfare Research Fund(GYHY201006008 and GYHY200906002)
文摘The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanied with a decrease in low-level wind speed, an expansion of the radius of strong wind, weakening of the upper-level warm core, and drying of the mid-tropospheric air. On average, the warm core of the TCs dissipates 24 h after landfall. The height of the maximum low-level wind and the base of the stable layer both increase with the increased distance to the TC center;however, the former is always higher than the latter. In particular, an asymmetric structure of the TC after landfall is found. The kinematic and thermodynamic structures across various areas of TC circulation diff er, especially over the left-front and right-rear quadrants (relative to the direction of TC motion). In the left-front quadrant, strong winds locate at a smaller radius, the upper-level temperature is warmer with the warm core extending into a deep layer, while the wet air occupies a shallow layer. In the right-rear quadrant, strong wind and wet air dwell in an area that is broader and deeper, and the warmest air is situated farther away from the TC center.
基金support from the UVigo PhD grantssupport from the Xunta de Galicia(Galician Regional Government)under grant No.ED481A2020/193。
文摘Tropical cyclone(TC)-related rainfall mostly depends on the atmospheric moisture uptake from local and remote sources.In this study,the mean water vapour residence time(MWVRT)was computed for precipitation related to TCs in each basin and on a global scale by applying a Lagrangian moisture source diagnostic method.According to our results,the highest MWVRT was found for the TCs over the South Indian Ocean and South Pacific Ocean basins(~3.08 days),followed by the Western North Pacific Ocean,Central and East North Pacific Ocean,North Indian Ocean,and North Atlantic Ocean basins(which exhibited values of 2.98,2.94,2.85,and 2.72 days,respectively).We also found a statistically significant(p<0.05)decrease in MWVRT,at a rate of~2.4 h/decade in the North Indian Ocean and~1.0 h/decade in the remaining basins.On average,the MWVRT decreased during the 24 h before TCs made landfall,and the atmospheric parcels precipitated faster after evaporation when TCs moved over land than over the ocean.Further research should focus on the relationship between global warming and MWVRT of atmospheric parcels that precipitate over TC positions.