The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to...The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.展开更多
In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral ima...In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.展开更多
Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable gro...Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.展开更多
利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分...利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。展开更多
为验证Landsat-8陆地成像仪(operational land imager,OLI)遥感数据与Sentinel-2多光谱成像仪(multispectral imager,MSI)遥感数据监测近海海域叶绿素a浓度可行性,以其为数据源,香港近海海域为研究区域,以半分析模型为方法,挑选与监测...为验证Landsat-8陆地成像仪(operational land imager,OLI)遥感数据与Sentinel-2多光谱成像仪(multispectral imager,MSI)遥感数据监测近海海域叶绿素a浓度可行性,以其为数据源,香港近海海域为研究区域,以半分析模型为方法,挑选与监测点实测叶绿素a浓度采集时间一致且遥感影像云覆盖率小于10%影像清晰的两类遥感影像。对两类遥感影像分别选取2/3的遥感影像数据经预处理后提取其对应实测日期监测点位置遥感反射率进行相关性分析,得到相关性最高的反演因子进行建模,并且利用剩下的1/3数据对其反演回复回归模型进行精度检验,其结果与OCx Ocean Chlorophyll X模型反演结果进行对比效果显著。基于Landsat-8遥感数据建立的最佳反演回归半分析模型决定系数R^(2)为0.906,略高于基于Sentinel-2遥感数据建立的最佳反演回归半分析模型,其R^(2)为0.801。与此同时证明了就香港近海海域叶绿素a浓度反演两类遥感数据的可行性,且两类数据的反演结果均呈现出香港近海海域内部海域叶绿素a浓度高于外部叶绿素a浓度的现象。展开更多
基金Auhui Provincial Key Research and Development Project(No.202004a07020050)National Natural Science Foundation of China Youth Program(No.61901006)。
文摘The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.
文摘In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.
文摘Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.
文摘利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。