The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the souther...The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the southern front of the Central High Atlas and the northern slopes of the Eastern Anti-Atlas(also known as the Saghro Massif).To achieve this objective,Landsat 8 Operational Land Imager(OLI)and Shuttle Radar Topography Mission(SRTM)data were used.Principal Component Analysis(PCA)was computed and a directional filter was applied to the first PCA and the panchromatic band(B8).Additionally,shading was applied to the SRTM data in four directions;N0°,N45°,N90°,N135°.After removing of the non-geological linear structures,the results obtained,using the automatic extraction method,allowed us to produce a synthetic map that included 1251 lineaments with an average length of 1331 m and was dominated by NE-SW,ENE-WSW and E-W directions,respectively.However,the high lineament density is clearly noted in the Anti-Atlas(Saghro Massif)and at the level of the northern part,extending from the Ait Ibrirne to Arg-Ali Oubourk villages.High lineament density can always be found around the major faults affecting this area.The data collected during the field investigations and from geological maps show that the major direction of the faults and structural accidents range mostly between N45°,N70°and N75°.The correlation of remote sensing results with those collected in the field shows a similarity and coincidence with each other.From these results,it is possible to consider the automatic extraction method as a supplementary kind that can serve classical geology by quickly enriching it with additional data.As shown in this work,this method provides more information when applied in arid areas where the fields are well outcropped.展开更多
利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分...利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。展开更多
This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 mill...This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>展开更多
The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation tech...The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation techniques. As both chemical and geochemical analyses showed significant Au, Ag, Cu, Pb, Mn, Cr, Ni, Th and Y anomalies, it’s very interesting to apply the remote sensing and GIS in mineral resources mapping. The remote sensing is a direct adjunct to the field, lithologic and structural mapping, and more recently, GIS has played an important role in the study of mineralization areas. The integration of several evidential maps highlighted the plausible areas with high concentrations of chlorite, epidote, kaolinite, calcite, alunite, hematite, illite and sulfur among other key mineral alterations that reflect the intensity of hydrothermal effects and the probable sites of ore bodies. The methodological approach integrates geological information acquired from Aster and Landsat 8 OLI/TIRS (Operational Land Imager/Thermal InfraRed Sensor) images and a multi-criteria GIS analysis. The superimposition of various lineament and hydrothermal alteration maps and the consideration of precious and base metal indicators allowed the zoning of sites likely to contain mineral concentrations. Remote sensing becomes an important tool for locating mineral deposits in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithological mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. Ground truthing and laboratory studies including XRD analysis were utilized to verify the results.展开更多
In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral ima...In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.展开更多
文摘The integration of remote sensing and geographic information system(GIS)was employed in this study to delineate the structural lineaments within the eastern section of the Ouarzazate Basin,situated between the southern front of the Central High Atlas and the northern slopes of the Eastern Anti-Atlas(also known as the Saghro Massif).To achieve this objective,Landsat 8 Operational Land Imager(OLI)and Shuttle Radar Topography Mission(SRTM)data were used.Principal Component Analysis(PCA)was computed and a directional filter was applied to the first PCA and the panchromatic band(B8).Additionally,shading was applied to the SRTM data in four directions;N0°,N45°,N90°,N135°.After removing of the non-geological linear structures,the results obtained,using the automatic extraction method,allowed us to produce a synthetic map that included 1251 lineaments with an average length of 1331 m and was dominated by NE-SW,ENE-WSW and E-W directions,respectively.However,the high lineament density is clearly noted in the Anti-Atlas(Saghro Massif)and at the level of the northern part,extending from the Ait Ibrirne to Arg-Ali Oubourk villages.High lineament density can always be found around the major faults affecting this area.The data collected during the field investigations and from geological maps show that the major direction of the faults and structural accidents range mostly between N45°,N70°and N75°.The correlation of remote sensing results with those collected in the field shows a similarity and coincidence with each other.From these results,it is possible to consider the automatic extraction method as a supplementary kind that can serve classical geology by quickly enriching it with additional data.As shown in this work,this method provides more information when applied in arid areas where the fields are well outcropped.
文摘利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。
文摘This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>
文摘The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation techniques. As both chemical and geochemical analyses showed significant Au, Ag, Cu, Pb, Mn, Cr, Ni, Th and Y anomalies, it’s very interesting to apply the remote sensing and GIS in mineral resources mapping. The remote sensing is a direct adjunct to the field, lithologic and structural mapping, and more recently, GIS has played an important role in the study of mineralization areas. The integration of several evidential maps highlighted the plausible areas with high concentrations of chlorite, epidote, kaolinite, calcite, alunite, hematite, illite and sulfur among other key mineral alterations that reflect the intensity of hydrothermal effects and the probable sites of ore bodies. The methodological approach integrates geological information acquired from Aster and Landsat 8 OLI/TIRS (Operational Land Imager/Thermal InfraRed Sensor) images and a multi-criteria GIS analysis. The superimposition of various lineament and hydrothermal alteration maps and the consideration of precious and base metal indicators allowed the zoning of sites likely to contain mineral concentrations. Remote sensing becomes an important tool for locating mineral deposits in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithological mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. Ground truthing and laboratory studies including XRD analysis were utilized to verify the results.
文摘In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.