Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of...Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction.展开更多
The study examines the changes of land cover/use resources for the period under investigation.An unsupervised vegetation classification is being performed that provides five distinctive classes and thus assesses these...The study examines the changes of land cover/use resources for the period under investigation.An unsupervised vegetation classification is being performed that provides five distinctive classes and thus assesses these changes in five broad land cover classes-high/moist forests,forest regrowth,mixed savanna,bare land/ grass and water.The remote sensing images used in this work are both images of TM and ETM+in different time periods(1986 to 2001)to determine land cover/use changes.A fairly accuracy report is recorded after performing the unsupervised classification,which shows vegetation has been depleted for over the years.Changes created are mostly human and to a lesser extent environment.Human activities are mainly encroachment thus altering the landscape through activities such as population growth,agriculture,settlements,etc.and environment due to some perceive climatic changes.This vegetation classification highlights the importance to acquire and publish information about the country's partial vegetation cover and vegetation change including vegetation maps and other basic vegetation influencing factors,leading to an understanding of its evolution for a period.展开更多
基金The National Natural Science Foundation of China under contract Nos 41506198 and 41476101the Natural Science Foundation Projects of Shandong Province of China under contract No.ZR2012FZ003the Science and Technology Development Plan of Qingdao City of China under contract No.13-1-4-121-jch
文摘Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction.
文摘The study examines the changes of land cover/use resources for the period under investigation.An unsupervised vegetation classification is being performed that provides five distinctive classes and thus assesses these changes in five broad land cover classes-high/moist forests,forest regrowth,mixed savanna,bare land/ grass and water.The remote sensing images used in this work are both images of TM and ETM+in different time periods(1986 to 2001)to determine land cover/use changes.A fairly accuracy report is recorded after performing the unsupervised classification,which shows vegetation has been depleted for over the years.Changes created are mostly human and to a lesser extent environment.Human activities are mainly encroachment thus altering the landscape through activities such as population growth,agriculture,settlements,etc.and environment due to some perceive climatic changes.This vegetation classification highlights the importance to acquire and publish information about the country's partial vegetation cover and vegetation change including vegetation maps and other basic vegetation influencing factors,leading to an understanding of its evolution for a period.