Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations o...Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations of ground-based instruments and satellite-borne sensors are useful for attaining improved accuracy in the observation of relatively wide area. In the present paper, aerosol parameters in the lower troposphere are monitored using a plan position indicator (PPI) lidar, ground-sampling instruments (a nephelometer, an aethalometer, and optical particle counters), as well as a sunphotometer. The purpose of these observations is to retrieve the aerosol extinction coefficient (AEC) and aerosol optical thickness (AOT) simultaneously at the overpass time of Landsat-8 satellite. The PPI lidar, operated at 349 nm, provides nearly horizontal distribution of AEC in the lower part of the atmospheric boundary layer. For solving the lidar equation, the boundary condition and lidar ratio are determined from the data of ground sampling instruments. The value of AOT, on the other hand, is derived from sunphotometer, and used to analyze the visible band imagery of Landsat-8 satellite. The radiative transfer calculation is conducted using the MODTRAN code with the original aerosol type that has been determined from the ground sampling data coupled with the Mie scattering calculation. Reasonable agreement is found between the spatial distribution of AEC from the PPI lidar and that of AOT from the blue band (band 2) of Landsat-8. The influence of AOT on the values of apparent surface reflectance is also discussed.展开更多
“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采...“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。展开更多
This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 mill...This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>展开更多
为精准识别水体信息并实时监测湖泊水体时空特征及其环境特征变化情况,以洞庭湖为例,基于Landsat-8影像数据分别使用改进的归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)、自动水体提取指数(Automated Water E...为精准识别水体信息并实时监测湖泊水体时空特征及其环境特征变化情况,以洞庭湖为例,基于Landsat-8影像数据分别使用改进的归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)、自动水体提取指数(Automated Water Extraction Index,AWEI sh)、支持向量机(Support Vector Machine,SVM)、人工神经网络(Artificial Neural Networks,ANNs)、随机森林(Random Forest,RF)等5种方法提取枯、丰水期水体分布信息,通过精度指标评价及影响因素分析,旨在找到提取精度高、鲁棒性强的水体提取方法。结果表明:5种方法中SVM法水体提取总精度最高且泛化能力良好。研究成果可为各方法适用性提供一定参考,并通过定量分析揭示漏提率在提取精度评价指标中的重要性。展开更多
As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-...As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight.The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission.This article has presented the briefs of the scientific achievements of these space experiments,the composition and performance of the Microgravity Experimental System(MES) and the general picture of the overall flight mission,respectively.展开更多
文摘Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations of ground-based instruments and satellite-borne sensors are useful for attaining improved accuracy in the observation of relatively wide area. In the present paper, aerosol parameters in the lower troposphere are monitored using a plan position indicator (PPI) lidar, ground-sampling instruments (a nephelometer, an aethalometer, and optical particle counters), as well as a sunphotometer. The purpose of these observations is to retrieve the aerosol extinction coefficient (AEC) and aerosol optical thickness (AOT) simultaneously at the overpass time of Landsat-8 satellite. The PPI lidar, operated at 349 nm, provides nearly horizontal distribution of AEC in the lower part of the atmospheric boundary layer. For solving the lidar equation, the boundary condition and lidar ratio are determined from the data of ground sampling instruments. The value of AOT, on the other hand, is derived from sunphotometer, and used to analyze the visible band imagery of Landsat-8 satellite. The radiative transfer calculation is conducted using the MODTRAN code with the original aerosol type that has been determined from the ground sampling data coupled with the Mie scattering calculation. Reasonable agreement is found between the spatial distribution of AEC from the PPI lidar and that of AOT from the blue band (band 2) of Landsat-8. The influence of AOT on the values of apparent surface reflectance is also discussed.
文摘“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。
文摘This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>
基金The space experiments are financially supported by the Knowledge Innovation Program of Chinese Academy of Sciences and Chinese National Space AdministrationChina Academy of Space Technology (CAST) and Ministry of Agriculture of the People's Republic of China for their contributions to the accomplishment of the project
文摘As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight.The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission.This article has presented the briefs of the scientific achievements of these space experiments,the composition and performance of the Microgravity Experimental System(MES) and the general picture of the overall flight mission,respectively.