Mao抏rshan region is a representative natural secondary forested region in the eastern mountainous region, north-east of China. Under the support of ARC/INFO, the landscape pattern and landscape diversity of Maoerhsha...Mao抏rshan region is a representative natural secondary forested region in the eastern mountainous region, north-east of China. Under the support of ARC/INFO, the landscape pattern and landscape diversity of Maoerhshan region were studied by combining the forest type map (1:10000), which was drawn from the aerial photographs (1999), field investigation and land utilization map (1:10000). The selected indices included patch number, patch size, patch density index, richness index, dominance index, evenness index and diversity index. The results showed that the landscape dominant forest type in Mao抏rshan region was softwood broad-leaved forest. In all landscape types, the average patch area of natural secondary for-ests was bigger than that of artificial forest. The patch density index of each landscape formed in artificial forest was higher than that of natural secondary forest. The landscape diversity index and landscape evenness index of natural forest were highest, the landscape heterogeneity was also, but the landscape dominance was lower. In natural forest, the control effects of landscape elements on landscape-structure, function and its change were weakened. The artificial forest was on the contrary.展开更多
As one of the basic theories of biodiversity conservation,island biogeography has been widely accepted in the past decades.Originally,island biogeography was put forward and applied in oceanic environments.But later o...As one of the basic theories of biodiversity conservation,island biogeography has been widely accepted in the past decades.Originally,island biogeography was put forward and applied in oceanic environments.But later on,it was found out that the application was not only limited to oceanic islands,but also in terrestrial environments with relatively isolated conditions.In terms of biodiversity level,island biogeography generally focuses on a small scale,such as species diversity and genetic diversity.The studies of biodiversity on a large-scale based on island biogeography,such as ecosystem and landscape scales,were seldomly conducted.Taking Poyang Lake,the largest fresh water lake in China as case study area,30 grasslands were randomly selected to study whether island biogeography can be applied to grasslands at a landscape level from three island attributes(area,distance and shape),and the most important ecological variable(flooding)in Poyang Lake.The results showed that in general,grasslands have the property of an island,and follow the basic principle of island biogeography.We found the area and flooding duration were the two most important determinants of landscape diversity.There was a significant positive correlation between the grassland area and the landscape diversity,which could be well expressed by logarithmic function model(R2=0.73).There was a negative correlation between flooding duration and landscape diversity,which could be described by an inverse model(R2=0.206).The distance to mainland and the shape of grassland were correlated with landscape diversity,but the fitting result of the models was not as good as expected.The possible reason could be that Poyang Lake is a seasonal lake,the water level varies with hydrological conditions,so that the grasslands are not strongly isolated and their shape is not stable enough required by island biogeography.Furthermore,it indicates that besides area,distance and shape attributes,flooding strongly affects the biodiversity of grassland vegetation,and should not be ignored when applying island biogeography theory to Poyang Lake.This study is expected to be a supplement for island biogeography in terrestrial environments,and the results are expected to benefit for the biodiversity conservation in Poyang Lake.展开更多
Wulingyuan is located at the mountainous area of the middle reach of the Yangtze River, it is one of the three nature heritages in China which ranks in the “List of World's Heritage” by UNESCO. It is characteriz...Wulingyuan is located at the mountainous area of the middle reach of the Yangtze River, it is one of the three nature heritages in China which ranks in the “List of World's Heritage” by UNESCO. It is characterized by quartz sandstone peaks landform with several landform components(pattern, corridor) and rich in landscape ecological diversity and biodiversity. The main patterns(ecosystem) include mid-height mountain peaks, rift-valley and streams among peaks, peaks and gullies on slopes, square mountain-platforms and peaks among blind valleys and so on. The corridor system consists of natural corridors and artificial corridors among which the stream corridors account for a major part. The fracturing of habitat is unfavorable for the biodiversity conservation, but meanwhile the habitat diversity leads to an increase in biodiversity. Therefore, it is still rich in landscape ecological diversity in Wulingyuan. The biodiversity at the level of landscape component(ecosystem) and the function of the Wulingyuan complex ecosystem, and the measures for the biodiversity conservation in Wulingyuan ecotourism area are discussed in this paper.展开更多
With Maolan Nature Reserve as an example, its forest landscape characteristics and diversity were studied by utilizing GIS. The results showed that the overall forest landscape in Maolan Nature Reserve was quite good,...With Maolan Nature Reserve as an example, its forest landscape characteristics and diversity were studied by utilizing GIS. The results showed that the overall forest landscape in Maolan Nature Reserve was quite good, but with the increasing natural interferences and human activities, shrub forests and non-woodland landscape types have been multiplied; among the 3 functional zones of the Nature Reserve, landscape fragmentation degree is low in core zone and buffer zone, but high in experimental zone.展开更多
The models for landscape connectivity are distinguished into models for line connectivity, vertex connectivity, network connectivity and patch connectivity separately. Because the models for line connectivity, for ver...The models for landscape connectivity are distinguished into models for line connectivity, vertex connectivity, network connectivity and patch connectivity separately. Because the models for line connectivity, for vertex connectivity, and for network connectivity have long been studied and have become ripe, the model for patch connectivity is paid special attention in this paper. The patch connectivity is defined as the average movement efficiency (minimizing movement distance) of animal migrants or plant propagules in patches of a region under consideration. According to this definition, a model for landscape connectivity is mathematically deduced to apply to GIS data. The application of model for patch connectivity in the new-born wetland of the Yellow River Delta shows patch connectivity has a negative interrelation with human impact intensity and landscape diversity.展开更多
文摘Mao抏rshan region is a representative natural secondary forested region in the eastern mountainous region, north-east of China. Under the support of ARC/INFO, the landscape pattern and landscape diversity of Maoerhshan region were studied by combining the forest type map (1:10000), which was drawn from the aerial photographs (1999), field investigation and land utilization map (1:10000). The selected indices included patch number, patch size, patch density index, richness index, dominance index, evenness index and diversity index. The results showed that the landscape dominant forest type in Mao抏rshan region was softwood broad-leaved forest. In all landscape types, the average patch area of natural secondary for-ests was bigger than that of artificial forest. The patch density index of each landscape formed in artificial forest was higher than that of natural secondary forest. The landscape diversity index and landscape evenness index of natural forest were highest, the landscape heterogeneity was also, but the landscape dominance was lower. In natural forest, the control effects of landscape elements on landscape-structure, function and its change were weakened. The artificial forest was on the contrary.
基金supported by the National Natural Science Foundation of China(Nos.41961036,41901130).
文摘As one of the basic theories of biodiversity conservation,island biogeography has been widely accepted in the past decades.Originally,island biogeography was put forward and applied in oceanic environments.But later on,it was found out that the application was not only limited to oceanic islands,but also in terrestrial environments with relatively isolated conditions.In terms of biodiversity level,island biogeography generally focuses on a small scale,such as species diversity and genetic diversity.The studies of biodiversity on a large-scale based on island biogeography,such as ecosystem and landscape scales,were seldomly conducted.Taking Poyang Lake,the largest fresh water lake in China as case study area,30 grasslands were randomly selected to study whether island biogeography can be applied to grasslands at a landscape level from three island attributes(area,distance and shape),and the most important ecological variable(flooding)in Poyang Lake.The results showed that in general,grasslands have the property of an island,and follow the basic principle of island biogeography.We found the area and flooding duration were the two most important determinants of landscape diversity.There was a significant positive correlation between the grassland area and the landscape diversity,which could be well expressed by logarithmic function model(R2=0.73).There was a negative correlation between flooding duration and landscape diversity,which could be described by an inverse model(R2=0.206).The distance to mainland and the shape of grassland were correlated with landscape diversity,but the fitting result of the models was not as good as expected.The possible reason could be that Poyang Lake is a seasonal lake,the water level varies with hydrological conditions,so that the grasslands are not strongly isolated and their shape is not stable enough required by island biogeography.Furthermore,it indicates that besides area,distance and shape attributes,flooding strongly affects the biodiversity of grassland vegetation,and should not be ignored when applying island biogeography theory to Poyang Lake.This study is expected to be a supplement for island biogeography in terrestrial environments,and the results are expected to benefit for the biodiversity conservation in Poyang Lake.
文摘Wulingyuan is located at the mountainous area of the middle reach of the Yangtze River, it is one of the three nature heritages in China which ranks in the “List of World's Heritage” by UNESCO. It is characterized by quartz sandstone peaks landform with several landform components(pattern, corridor) and rich in landscape ecological diversity and biodiversity. The main patterns(ecosystem) include mid-height mountain peaks, rift-valley and streams among peaks, peaks and gullies on slopes, square mountain-platforms and peaks among blind valleys and so on. The corridor system consists of natural corridors and artificial corridors among which the stream corridors account for a major part. The fracturing of habitat is unfavorable for the biodiversity conservation, but meanwhile the habitat diversity leads to an increase in biodiversity. Therefore, it is still rich in landscape ecological diversity in Wulingyuan. The biodiversity at the level of landscape component(ecosystem) and the function of the Wulingyuan complex ecosystem, and the measures for the biodiversity conservation in Wulingyuan ecotourism area are discussed in this paper.
基金Supported by National Natural Science Foundation(40971160)Project of Guizhou Provincial Natural Science Foundation(2007-2049)+2 种基金Guizhou Provincial High-grade Talents Project(TZJF-2008-40)Supporting Project for Guizhou Provincial Outstanding Young S&T Talents in 2009Key Project of Guizhou Normal University Students'Tasks~~
文摘With Maolan Nature Reserve as an example, its forest landscape characteristics and diversity were studied by utilizing GIS. The results showed that the overall forest landscape in Maolan Nature Reserve was quite good, but with the increasing natural interferences and human activities, shrub forests and non-woodland landscape types have been multiplied; among the 3 functional zones of the Nature Reserve, landscape fragmentation degree is low in core zone and buffer zone, but high in experimental zone.
基金The Knowledge Innovation Project of CAS KZCX2-308-02Director Fund of Institute of Geographic Sciences and Natural Resources Research (IGSNRR) of CAS (SJ10G-D00-02)Major Scientific Program of Knowledge Innovation Project of IGSNRR CAS CX10G-E01-04
文摘The models for landscape connectivity are distinguished into models for line connectivity, vertex connectivity, network connectivity and patch connectivity separately. Because the models for line connectivity, for vertex connectivity, and for network connectivity have long been studied and have become ripe, the model for patch connectivity is paid special attention in this paper. The patch connectivity is defined as the average movement efficiency (minimizing movement distance) of animal migrants or plant propagules in patches of a region under consideration. According to this definition, a model for landscape connectivity is mathematically deduced to apply to GIS data. The application of model for patch connectivity in the new-born wetland of the Yellow River Delta shows patch connectivity has a negative interrelation with human impact intensity and landscape diversity.