Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex...Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.展开更多
Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at hig...Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.展开更多
Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.Th...Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Naïve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Naïve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).展开更多
A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eig...A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
Rainfall-triggered landslides have posed significant threats to human lives and property each year in China. This paper proposed a meteorologicalgeotechnical early warning system GRAPES-LFM(GRAPES: Global and Regional...Rainfall-triggered landslides have posed significant threats to human lives and property each year in China. This paper proposed a meteorologicalgeotechnical early warning system GRAPES-LFM(GRAPES: Global and Regional Assimilation and Pr Ediction System; LFM: Landslide Forecast Model),basing on the GRAPES model and the landslide predicting model TRIGRS(Transient Rainfall Infiltration and Grid-based Regional Slope-Stability Model) for predicting rainfall-triggered landslides.This integrated system is evaluated in Dehua County,Fujian Province, where typhoon Bilis triggered widespread landslides in July 2006. The GRAPES model runs in 5 km×5 km horizontal resolution, and the initial fields and lateral boundaries are provided by NCEP(National Centers for Environmental Prediction) FNL(Final) Operational Global Analysis data. Quantitative precipitation forecasting products of the GRAPES model are downscaled to 25 m×25 m horizontal resolution by bilinear interpolation to drive the TRIGRS model. Results show that the observed areas locate in the high risk areas, and the GRAPES-LFM model could capture about 74% of the historical landslides with the rainfall intense 30mm/h. Meanwhile, this paper illustrates the relationship between the factor of safety(FS) and different rainfall patterns. GRAPES-LFM model enables us to further develop a regional, early warning dynamic prediction tool of rainfall-induced landslides.展开更多
The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides.This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifan...The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides.This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011.The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site.The irrigation water was simulated by applying continuous infiltration from back of the slope.The deformation,earth pressure,and pore pressure were investigated during test by a series of transducers.For this particular study,the results showed that the failure processes were characterized by retrogressive landslides and cracks.The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures.The foot part of slope is very important for slope instability and hazard prevention in the study area,where concentration of earth pressure and generation of high pore-water pressures would form before failures.The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area.展开更多
Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to sim...Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to simulate the dynamic procedure for the intrusion of landslide into rivers. The two-layer shallow water system is derived by depth averaging the incompressible Navier-Stokes equations with the hydrostatic assumption. A high order accuracy scheme based on the finite volume method is proposed to solve the presented model equations. Several numerical tests are performed to verify the realiability and feasibility of the proposed model. The numerical results indicate that the proposed method can be competent for simulating the dynamic process of landslide intrusion into the river. The interaction effect between both layers has a significant impact on the landslide movement, water fluctuation and wave propagation.展开更多
Back-analysis is broadly used for approaching geotechnical problems when monitoring data are available and information about the soils properties is of poor quality.For landslide stability assessment back-analysis cal...Back-analysis is broadly used for approaching geotechnical problems when monitoring data are available and information about the soils properties is of poor quality.For landslide stability assessment back-analysis calibration is usually carried out by time consuming trial-and-error procedure.This paper presents a new automatic Decision Support System that supports the selection of the soil parameters for three-dimensional models of landslides based on monitoring data.The method considering a pool of possible solutions,generated through permutation of soil parameters,selects the best ten configurations that are more congruent with the measured displacements.This reduces the operator biases while on the other hand allows the operator to control each step of the computation.The final selection of the preferred solution among the ten best-fitting solutions is carried out by an operator.The operator control is necessary as he may include in the final decision process all the qualitative elements that cannot be included in a qualitative analysis but nevertheless characterize a landslide dynamic as a whole epistemological subject,for example on the base of geomorphological evidence.A landslide located in Northeast Italy has been selected as example for showing the system potentiality.The proposed method is straightforward,scalable and robust and could be useful for researchers and practitioners.展开更多
A composite fall-slippage model is proposed in this study for the Tertiary sedimentary coastal cliffs of Varkala in the western coastal tract of Peninsular India which are retreating landwards due to the combination o...A composite fall-slippage model is proposed in this study for the Tertiary sedimentary coastal cliffs of Varkala in the western coastal tract of Peninsular India which are retreating landwards due to the combination of several factors.The fall model in the present study accounts both spring seepage and wave action,resulting in undercutting and this fall affects only the topmost laterite and the just below sandstone in the cliff.Slippage in this area affects all the litho-units and hence the geologic characteristics of all the litho-units are considered for developing the slippage model.This mathematically derived model can be used in other cliffs exhibiting the same morphology as well as the one controlled by the same influencing factors.This model differs from other models in incorporating multi-lithounits as well as multi-notches.Varkala cliffs form a part of the aspiring geopark in the Global Geopark Network and hence a study on the cliff recession is a pressing requirement.展开更多
Regional modeling of landslide hazards is an essential tool for the assessment and management of risk in mountain environments.Previous studies that have focused on modeling earthquake-triggered landslides report high...Regional modeling of landslide hazards is an essential tool for the assessment and management of risk in mountain environments.Previous studies that have focused on modeling earthquake-triggered landslides report high prediction accuracies.However,it is common to use a validation strategy with an equal number of landslide and non-landslide samples,scattered homogeneously across the study area.Consequently,there are overestimations in the epicenter area,and the spatial pattern of modeled locations does not agree well with real events.In order to improve landslide hazard mapping,we proposed a spatially heterogeneous non-landslide sampling strategy by considering local ratios of landslide to non-landslide area.Coseismic landslides triggered by the 2008 Wenchuan Earthquake on the eastern Tibetan Plateau were used as an example.To assess the performance of the new strategy,we trained two random forest models that shared the same hyperparameters.The frst was trained using samples from the new heterogeneous strategy,and the second used the traditional approach.In each case the spatial match between modeled and measured(interpreted)landslides was examined by scatterplot,with a 2 km-by-2 km fshnet.Although the traditional approach achieved higher AUC_(ROC)(0.95)accuracy than the proposed one(0.85),the coefcient of determination(R^(2))for the new strategy(0.88)was much higher than for the traditional strategy(0.55).Our results indicate that the proposed strategy outperforms the traditional one when comparing against landslide inventory data.Our work demonstrates that higher prediction accuracies in landslide hazard modeling may be deceptive,and validation of the modeled spatial pattern should be prioritized.The proposed method may also be used to improve the mapping of precipitation-induced landslides.Application of the proposed strategy could beneft precise assessment of landslide risks in mountain environments.展开更多
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金Supported by Key Research and Development Project of Guangxi Pr ovince(No.AB21196028).
文摘Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.
文摘Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.
文摘Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Naïve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Naïve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).
基金Financial support from National Nature Science Foundation of China (Grant No. 41572303, 41520104002)Chinese Academy of Sciences “Light of West China” Program and Youth Innovation Promotion Association
文摘A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金supported by The National Basic Research Program of China(973)(Grant No.2013CB430106)National Natural Science Foundation of China(Grant No.41375108)Scientific Research&Innovation Projects for Academic Degree students of ordinary Universities of Jiangsu(Grant No.CXLX13_474)
文摘Rainfall-triggered landslides have posed significant threats to human lives and property each year in China. This paper proposed a meteorologicalgeotechnical early warning system GRAPES-LFM(GRAPES: Global and Regional Assimilation and Pr Ediction System; LFM: Landslide Forecast Model),basing on the GRAPES model and the landslide predicting model TRIGRS(Transient Rainfall Infiltration and Grid-based Regional Slope-Stability Model) for predicting rainfall-triggered landslides.This integrated system is evaluated in Dehua County,Fujian Province, where typhoon Bilis triggered widespread landslides in July 2006. The GRAPES model runs in 5 km×5 km horizontal resolution, and the initial fields and lateral boundaries are provided by NCEP(National Centers for Environmental Prediction) FNL(Final) Operational Global Analysis data. Quantitative precipitation forecasting products of the GRAPES model are downscaled to 25 m×25 m horizontal resolution by bilinear interpolation to drive the TRIGRS model. Results show that the observed areas locate in the high risk areas, and the GRAPES-LFM model could capture about 74% of the historical landslides with the rainfall intense 30mm/h. Meanwhile, this paper illustrates the relationship between the factor of safety(FS) and different rainfall patterns. GRAPES-LFM model enables us to further develop a regional, early warning dynamic prediction tool of rainfall-induced landslides.
基金partially supported by the National Science Foundation of China (Grant No. 41572302)the Funds for Creative Research Groups of China (Grant No. 41521002)
文摘The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides.This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011.The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site.The irrigation water was simulated by applying continuous infiltration from back of the slope.The deformation,earth pressure,and pore pressure were investigated during test by a series of transducers.For this particular study,the results showed that the failure processes were characterized by retrogressive landslides and cracks.The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures.The foot part of slope is very important for slope instability and hazard prevention in the study area,where concentration of earth pressure and generation of high pore-water pressures would form before failures.The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area.
基金Financial support from the National Science Fund for Distinguished Young Scholars (Grant No.41225011)the NSFC (Grant No. 41272346)+1 种基金the Information technology project of the Department of transportation (2014364J03090)the STS project of Chinese Academy of Sciences (project No. KFJ-EW-STS-094)
文摘Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to simulate the dynamic procedure for the intrusion of landslide into rivers. The two-layer shallow water system is derived by depth averaging the incompressible Navier-Stokes equations with the hydrostatic assumption. A high order accuracy scheme based on the finite volume method is proposed to solve the presented model equations. Several numerical tests are performed to verify the realiability and feasibility of the proposed model. The numerical results indicate that the proposed method can be competent for simulating the dynamic process of landslide intrusion into the river. The interaction effect between both layers has a significant impact on the landslide movement, water fluctuation and wave propagation.
基金financed by the CNR-IRPI in the context of the SinoItalian Laboratory on Geological and Hydrological Hazards(CUPB96J16001430005)between the National Research Council of Italy(CNR-IRPI)and the Chinese Academy of Sciences(CAS-IMHE)。
文摘Back-analysis is broadly used for approaching geotechnical problems when monitoring data are available and information about the soils properties is of poor quality.For landslide stability assessment back-analysis calibration is usually carried out by time consuming trial-and-error procedure.This paper presents a new automatic Decision Support System that supports the selection of the soil parameters for three-dimensional models of landslides based on monitoring data.The method considering a pool of possible solutions,generated through permutation of soil parameters,selects the best ten configurations that are more congruent with the measured displacements.This reduces the operator biases while on the other hand allows the operator to control each step of the computation.The final selection of the preferred solution among the ten best-fitting solutions is carried out by an operator.The operator control is necessary as he may include in the final decision process all the qualitative elements that cannot be included in a qualitative analysis but nevertheless characterize a landslide dynamic as a whole epistemological subject,for example on the base of geomorphological evidence.A landslide located in Northeast Italy has been selected as example for showing the system potentiality.The proposed method is straightforward,scalable and robust and could be useful for researchers and practitioners.
文摘A composite fall-slippage model is proposed in this study for the Tertiary sedimentary coastal cliffs of Varkala in the western coastal tract of Peninsular India which are retreating landwards due to the combination of several factors.The fall model in the present study accounts both spring seepage and wave action,resulting in undercutting and this fall affects only the topmost laterite and the just below sandstone in the cliff.Slippage in this area affects all the litho-units and hence the geologic characteristics of all the litho-units are considered for developing the slippage model.This mathematically derived model can be used in other cliffs exhibiting the same morphology as well as the one controlled by the same influencing factors.This model differs from other models in incorporating multi-lithounits as well as multi-notches.Varkala cliffs form a part of the aspiring geopark in the Global Geopark Network and hence a study on the cliff recession is a pressing requirement.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2021ZY46)the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP,Grant No.2019QZKK0906)Wentao Yang is grateful for the scholarship from the China Scholarships Council(No.202006515016)。
文摘Regional modeling of landslide hazards is an essential tool for the assessment and management of risk in mountain environments.Previous studies that have focused on modeling earthquake-triggered landslides report high prediction accuracies.However,it is common to use a validation strategy with an equal number of landslide and non-landslide samples,scattered homogeneously across the study area.Consequently,there are overestimations in the epicenter area,and the spatial pattern of modeled locations does not agree well with real events.In order to improve landslide hazard mapping,we proposed a spatially heterogeneous non-landslide sampling strategy by considering local ratios of landslide to non-landslide area.Coseismic landslides triggered by the 2008 Wenchuan Earthquake on the eastern Tibetan Plateau were used as an example.To assess the performance of the new strategy,we trained two random forest models that shared the same hyperparameters.The frst was trained using samples from the new heterogeneous strategy,and the second used the traditional approach.In each case the spatial match between modeled and measured(interpreted)landslides was examined by scatterplot,with a 2 km-by-2 km fshnet.Although the traditional approach achieved higher AUC_(ROC)(0.95)accuracy than the proposed one(0.85),the coefcient of determination(R^(2))for the new strategy(0.88)was much higher than for the traditional strategy(0.55).Our results indicate that the proposed strategy outperforms the traditional one when comparing against landslide inventory data.Our work demonstrates that higher prediction accuracies in landslide hazard modeling may be deceptive,and validation of the modeled spatial pattern should be prioritized.The proposed method may also be used to improve the mapping of precipitation-induced landslides.Application of the proposed strategy could beneft precise assessment of landslide risks in mountain environments.