The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz...The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.展开更多
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci...This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.展开更多
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ...The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.展开更多
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ...The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.展开更多
Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitu...Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tackling complex non-linear problems.However,the prevailing models often disregard qualitative research,leading to limited interpretability and mistakes in extracting negative samples,i.e.inaccurate non-landslide samples.In this study,Scoops 3D(a three-dimensional slope stability analysis tool)was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area.The depth of the bedrock was predicted utilizing a Convolutional Neural Network(CNN),incorporating local boreholes and building on the insights from prior research.The Random Forest(RF)algorithm was subsequently used to execute a data-driven landslide susceptibility analysis.The proposed methodology demonstrated a notable increase of 29.25%in the evaluation metric,the area under the receiver operating characteristic curve(ROC-AUC),outperforming the prevailing benchmark model.Furthermore,the landslide susceptibility map generated by the proposed model demonstrated superior interpretability.This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses,but it also carries substantial academic and practical implications.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study perfor...Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.展开更多
Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challen...Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to propose an ideal LSM model.To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM,this study constructed a geospatial database comprising 12 conditioning factors,such as elevation,stratum,and annual average rainfall.The XGBoost(XGB),LightGBM(LGBM),and CatBoost(CB)algorithms were employed to construct the LSM model.Furthermore,the Bayesian optimization(BO),particle swarm optimization(PSO),and Hyperband optimization(HO)algorithms were applied to optimizing the LSM model.The boosting algorithms exhibited varying performances,with CB demonstrating the highest precision,followed by LGBM,and XGB showing poorer precision.Additionally,the hyperparameter optimization algorithms displayed different performances,with HO outperforming PSO and BO showing poorer performance.The HO-CB model achieved the highest precision,boasting an accuracy of 0.764,an F1-score of 0.777,an area under the curve(AUC)value of 0.837 for the training set,and an AUC value of 0.863 for the test set.The model was interpreted using SHapley Additive exPlanations(SHAP),revealing that slope,curvature,topographic wetness index(TWI),degree of relief,and elevation significantly influenced landslides in the study area.This study offers a scientific reference for LSM and disaster prevention research.This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District.It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models.However,limitations exist concerning the generalizability of the model and the data processing,which require further exploration in subsequent studies.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
Most literature related to landslide susceptibility prediction only considers a single type of landslide,such as colluvial landslide,rock fall or debris flow,rather than different landslide types,which greatly affects...Most literature related to landslide susceptibility prediction only considers a single type of landslide,such as colluvial landslide,rock fall or debris flow,rather than different landslide types,which greatly affects susceptibility prediction performance.To construct efficient susceptibility prediction considering different landslide types,Huichang County in China is taken as example.Firstly,105 rock falls,350 colluvial landslides and 11 related environmental factors are identified.Then four machine learning models,namely logistic regression,multi-layer perception,support vector machine and C5.0 decision tree are applied for susceptibility modeling of rock fall and colluvial landslide.Thirdly,three different landslide susceptibility prediction(LSP)models considering landslide types based on C5.0 decision tree with excellent performance are constructed to generate final landslide susceptibility:(i)united method,which combines all landslide types directly;(ii)probability statistical method,which couples analyses of susceptibility indices under different landslide types based on probability formula;and(iii)maximum comparison method,which selects the maximum susceptibility index through comparing the predicted susceptibility indices under different types of landslides.Finally,uncertainties of landslide susceptibility are assessed by prediction accuracy,mean value and standard deviation.It is concluded that LSP results of the three coupled models considering landslide types basically conform to the spatial occurrence patterns of landslides in Huichang County.The united method has the best susceptibility prediction performance,followed by the probability method and maximum susceptibility method.More cases are needed to verify this result in-depth.LSP considering different landslide types is superior to that taking only a single type of landslide into account.展开更多
With its high mountains,deep valleys,and complex geological formations,the Jiuzhaigou County has the typical characteristics of a disaster-prone mountainous region in southwestern China.On August 8,2017,a strong Ms 7....With its high mountains,deep valleys,and complex geological formations,the Jiuzhaigou County has the typical characteristics of a disaster-prone mountainous region in southwestern China.On August 8,2017,a strong Ms 7.0 earthquake occurred in this region,causing some of the mountains in the area to become loose and cracked.Therefore,a survey and evaluation of landslides in this area can help to reveal hazards and take effective measures for subsequent disaster management.However,different evaluation models can yield different spatial distributions of landslide susceptibility,and thus,selecting the appropriate model and performing the optimal combination of parameters is the most effective way to improve susceptibility evaluation.In order to construct an evaluation indicator system suitable for Jiuzhaigou County,we extracted 12 factors affecting the occurrence of landslides,including slope,elevation and slope surface,and made samples.At the core of the transformer model is a self-attentive mechanism that enables any two of the features to be interlinked,after which feature extraction is performed via a forward propagation network(FFN).We exploited its coding structure to transform it into a deep learning model that is more suitable for landslide susceptibility evaluation.The results show that the transformer model has the highest accuracy(86.89%),followed by the random forest and support vector machine models(84.47%and 82.52%,respectively),and the logistic regression model achieves the lowest accuracy(79.61%).Accordingly,this deep learning model provides a new tool to achieve more accurate zonation of landslide susceptibility in Jiuzhaigou County.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning...The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning method.However,those studies demonstrated that different parameters can affect model performance.We optimized the SVM and obtained models as 5-fold cross validation(5-CV)SVM,genetic algorithm(GA)SVM,and particle swarm optimization(PSO)SVM.This study compared the prediction performances of logistic regression(LR),5-CV SVM,GA SVM,and PSO SVM on landslide susceptibility mapping,to explore the spatial distribution of landslide susceptibility in the study area in Tibetan Plateau,China.A geospatial database was established based on 392 historical landslides and 392 non-landslides in the study area.We used 11 influencing factors of altitude,slope,aspect,curvature,lithology,normalized difference vegetation index(NDVI),distance to road,distance to river,distance to fault,peak ground acceleration(PGA),and rainfall to construct an influencing factor evaluation system.To evaluate the models,four susceptibility maps were compared via receiver operating characteristics(ROC)curve and the results showed that prediction rates for the models are 84%(LR),87%(5-CV SVM),85%(GA SVM),and 90%(PSO SVM).We also used precision,recall,F1-score and accuracy to assess the quality performance of these models.The results showed that the PSO SVM had greater potential for future implementation in the Tibetan Plateau area because of its superior performance in the landslide susceptibility assessment.展开更多
Landslide susceptibility mapping of mountain roads is frequently confronted by insufficient historical landslide sample data,multicollinearity of existing evaluation index factors,and inconsistency of evaluation facto...Landslide susceptibility mapping of mountain roads is frequently confronted by insufficient historical landslide sample data,multicollinearity of existing evaluation index factors,and inconsistency of evaluation factors due to regional environmental variations.Then,a single machine learning model can easily become overfitting,thus reducing the accuracy and robustness of the evaluation model.This paper proposes a combined machine-learning model to address the issues.The landslide susceptibility in mountain roads were mapped by using factor analysis to normalize and reduce the dimensionality of the initial condition factor and generating six new combination factors as evaluation indexes.The mountain roads in the Youxi County,Fujian Province,China were used for the landslide susceptibility mapping.Three most frequently used machine learning techniques,support vector machine(SVM),random forest(RF),and artificial neural network(ANN)models,were used to model the landslide susceptibility of the study area and validate the accuracy of this evaluation index system.The global minimum variance portfolio was utilized to construct a machine learning combined model.5-fold cross-validation,statistical indexes,and AUC(Area Under Curve)values were implemented to evaluate the predictive accuracy of the landslide susceptibility model.The mean AUC values for the SVM,RF,and ANN models in the training stage were 89.2%,88.5%,and 87.9%,respectively,and 78.0%,73.7%,and 76.7%,respectively,in the validating stage.In the training and validation stages,the mean AUC values of the combined model were 92.4% and 87.1%,respectively.The combined model provides greater prediction accuracy and model robustness than one single model.展开更多
The eastern road section of the ChinaPakistan Economic Corridor(CPEC)traverses the challenging terrain of northern Pakistan,where frequent landslides pose a significant threat to socioeconomic development and infrastr...The eastern road section of the ChinaPakistan Economic Corridor(CPEC)traverses the challenging terrain of northern Pakistan,where frequent landslides pose a significant threat to socioeconomic development and infrastructure.However,the insufficient data on landslide hazards presents a substantial challenge to practical mitigation efforts.Therefore,we conducted an extensive study to gain insight into landslide assessment along the Mansehra-Muzaffarabad-Mirpur and Mangla(MMMM)Expressway.This study involved preparing a landslide inventory,analyzing landslide causative factors,and developing landslide susceptibility models(LSMs)using published data,remote sensing interpretations,field excursions and integrated predictive techniques.We first used Pearson's correlation coefficient(PCC),variable importance factors(VIF),and information gain ratio(IGR)to evaluate multicollinearity among the selected landslide causative factors(LCFs).Then,the topographic roughness index(TRI)with VIF>5 and PCC>0.7 was considered a redundant factor and thus removed before the data modeling.Finally,we adopted multiple machine-learning methods to analyze landslide susceptibility.The results indicate that the landslide inventory contains 1,776 events,of which 674 were classified based on geometrical and lithological configurations.The IGR results show that the rainfall,lithology,PGA,drainage density,slope,and distance to fault are the most effective LCFs.The AUC values for random forest(RF)(0.901),extreme gradient boosting(XGBoost)(0.884),and K-nearest neighbor(KNN)(0.872)remained higher than evidential belief function(EBF)(0.833),weight of evidence(WoE)(0.820),and certainty factor(CF)(0.810),respectively.The RF model outperformed all other models in terms of prediction.However,these models are accurate but newer in the area;thus,susceptible zones were verified with comprehensive field investigations.The northern and central regions accounted for the high and very high susceptibility classes in the final landslide susceptibility mapping(LSM)compared to the southern areas.展开更多
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ...The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.展开更多
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence...Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.展开更多
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres...Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices.展开更多
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ...As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.展开更多
文摘The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.
基金the Natural Science Foundation of China(41807285)Interdisciplinary Innovation Fund of Natural Science,NanChang University(9167-28220007-YB2107).
文摘This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
文摘The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.
基金the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
文摘The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
基金funded by the Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01)High-end Foreign Expert Introduction program(Grant No.G2022165004L)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.HZ2021001).
文摘Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tackling complex non-linear problems.However,the prevailing models often disregard qualitative research,leading to limited interpretability and mistakes in extracting negative samples,i.e.inaccurate non-landslide samples.In this study,Scoops 3D(a three-dimensional slope stability analysis tool)was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area.The depth of the bedrock was predicted utilizing a Convolutional Neural Network(CNN),incorporating local boreholes and building on the insights from prior research.The Random Forest(RF)algorithm was subsequently used to execute a data-driven landslide susceptibility analysis.The proposed methodology demonstrated a notable increase of 29.25%in the evaluation metric,the area under the receiver operating characteristic curve(ROC-AUC),outperforming the prevailing benchmark model.Furthermore,the landslide susceptibility map generated by the proposed model demonstrated superior interpretability.This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses,but it also carries substantial academic and practical implications.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金Postdoctoral Research Foundation of China (2021M700608)Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2021jcyj-bsh0047)+1 种基金Scientific Project Supported by the Bureau of Planning and Natural Resources, Chongqing (2301DH09002)Sichuan Transportation Science and Technology Project (2018ZL-01)。
文摘Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.
基金funded by the Natural Science Foundation of Chongqing(Grants No.CSTB2022NSCQ-MSX0594)the Humanities and Social Sciences Research Project of the Ministry of Education(Grants No.16YJCZH061).
文摘Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to propose an ideal LSM model.To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM,this study constructed a geospatial database comprising 12 conditioning factors,such as elevation,stratum,and annual average rainfall.The XGBoost(XGB),LightGBM(LGBM),and CatBoost(CB)algorithms were employed to construct the LSM model.Furthermore,the Bayesian optimization(BO),particle swarm optimization(PSO),and Hyperband optimization(HO)algorithms were applied to optimizing the LSM model.The boosting algorithms exhibited varying performances,with CB demonstrating the highest precision,followed by LGBM,and XGB showing poorer precision.Additionally,the hyperparameter optimization algorithms displayed different performances,with HO outperforming PSO and BO showing poorer performance.The HO-CB model achieved the highest precision,boasting an accuracy of 0.764,an F1-score of 0.777,an area under the curve(AUC)value of 0.837 for the training set,and an AUC value of 0.863 for the test set.The model was interpreted using SHapley Additive exPlanations(SHAP),revealing that slope,curvature,topographic wetness index(TWI),degree of relief,and elevation significantly influenced landslides in the study area.This study offers a scientific reference for LSM and disaster prevention research.This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District.It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models.However,limitations exist concerning the generalizability of the model and the data processing,which require further exploration in subsequent studies.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.
基金funded by the Natural Science Foundation of China(Grant Nos.52079062 and 41807285)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University,China(Grant No.9167-28220007-YB2107).
文摘Most literature related to landslide susceptibility prediction only considers a single type of landslide,such as colluvial landslide,rock fall or debris flow,rather than different landslide types,which greatly affects susceptibility prediction performance.To construct efficient susceptibility prediction considering different landslide types,Huichang County in China is taken as example.Firstly,105 rock falls,350 colluvial landslides and 11 related environmental factors are identified.Then four machine learning models,namely logistic regression,multi-layer perception,support vector machine and C5.0 decision tree are applied for susceptibility modeling of rock fall and colluvial landslide.Thirdly,three different landslide susceptibility prediction(LSP)models considering landslide types based on C5.0 decision tree with excellent performance are constructed to generate final landslide susceptibility:(i)united method,which combines all landslide types directly;(ii)probability statistical method,which couples analyses of susceptibility indices under different landslide types based on probability formula;and(iii)maximum comparison method,which selects the maximum susceptibility index through comparing the predicted susceptibility indices under different types of landslides.Finally,uncertainties of landslide susceptibility are assessed by prediction accuracy,mean value and standard deviation.It is concluded that LSP results of the three coupled models considering landslide types basically conform to the spatial occurrence patterns of landslides in Huichang County.The united method has the best susceptibility prediction performance,followed by the probability method and maximum susceptibility method.More cases are needed to verify this result in-depth.LSP considering different landslide types is superior to that taking only a single type of landslide into account.
基金funded by the National Natural Science Foundation of China(Grants No.41771444)Science and Technology Plan Project of Sichuan Province(Grants No.2021YJ0369).
文摘With its high mountains,deep valleys,and complex geological formations,the Jiuzhaigou County has the typical characteristics of a disaster-prone mountainous region in southwestern China.On August 8,2017,a strong Ms 7.0 earthquake occurred in this region,causing some of the mountains in the area to become loose and cracked.Therefore,a survey and evaluation of landslides in this area can help to reveal hazards and take effective measures for subsequent disaster management.However,different evaluation models can yield different spatial distributions of landslide susceptibility,and thus,selecting the appropriate model and performing the optimal combination of parameters is the most effective way to improve susceptibility evaluation.In order to construct an evaluation indicator system suitable for Jiuzhaigou County,we extracted 12 factors affecting the occurrence of landslides,including slope,elevation and slope surface,and made samples.At the core of the transformer model is a self-attentive mechanism that enables any two of the features to be interlinked,after which feature extraction is performed via a forward propagation network(FFN).We exploited its coding structure to transform it into a deep learning model that is more suitable for landslide susceptibility evaluation.The results show that the transformer model has the highest accuracy(86.89%),followed by the random forest and support vector machine models(84.47%and 82.52%,respectively),and the logistic regression model achieves the lowest accuracy(79.61%).Accordingly,this deep learning model provides a new tool to achieve more accurate zonation of landslide susceptibility in Jiuzhaigou County.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金financially supported by the National Natural Science Foundation of China(41977213)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0906)+3 种基金Science and Technology Department of Sichuan Province(2021YJ0032)Sichuan Transportation Science and Technology Project(2021-A-03)Sichuan Science and Technology Program(2022NSFSC0425)CREC Sichuan Eco-City Investment Co,Ltd.(R110121H01092)。
文摘The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning method.However,those studies demonstrated that different parameters can affect model performance.We optimized the SVM and obtained models as 5-fold cross validation(5-CV)SVM,genetic algorithm(GA)SVM,and particle swarm optimization(PSO)SVM.This study compared the prediction performances of logistic regression(LR),5-CV SVM,GA SVM,and PSO SVM on landslide susceptibility mapping,to explore the spatial distribution of landslide susceptibility in the study area in Tibetan Plateau,China.A geospatial database was established based on 392 historical landslides and 392 non-landslides in the study area.We used 11 influencing factors of altitude,slope,aspect,curvature,lithology,normalized difference vegetation index(NDVI),distance to road,distance to river,distance to fault,peak ground acceleration(PGA),and rainfall to construct an influencing factor evaluation system.To evaluate the models,four susceptibility maps were compared via receiver operating characteristics(ROC)curve and the results showed that prediction rates for the models are 84%(LR),87%(5-CV SVM),85%(GA SVM),and 90%(PSO SVM).We also used precision,recall,F1-score and accuracy to assess the quality performance of these models.The results showed that the PSO SVM had greater potential for future implementation in the Tibetan Plateau area because of its superior performance in the landslide susceptibility assessment.
基金the financial support from the National Natural Science Foundation of China(No.U2005205,No.42007235,No.41972268)the Science and Technology Innovation Platform Project of Fuzhou Science and Technology Bureau(No.2021-P-032)。
文摘Landslide susceptibility mapping of mountain roads is frequently confronted by insufficient historical landslide sample data,multicollinearity of existing evaluation index factors,and inconsistency of evaluation factors due to regional environmental variations.Then,a single machine learning model can easily become overfitting,thus reducing the accuracy and robustness of the evaluation model.This paper proposes a combined machine-learning model to address the issues.The landslide susceptibility in mountain roads were mapped by using factor analysis to normalize and reduce the dimensionality of the initial condition factor and generating six new combination factors as evaluation indexes.The mountain roads in the Youxi County,Fujian Province,China were used for the landslide susceptibility mapping.Three most frequently used machine learning techniques,support vector machine(SVM),random forest(RF),and artificial neural network(ANN)models,were used to model the landslide susceptibility of the study area and validate the accuracy of this evaluation index system.The global minimum variance portfolio was utilized to construct a machine learning combined model.5-fold cross-validation,statistical indexes,and AUC(Area Under Curve)values were implemented to evaluate the predictive accuracy of the landslide susceptibility model.The mean AUC values for the SVM,RF,and ANN models in the training stage were 89.2%,88.5%,and 87.9%,respectively,and 78.0%,73.7%,and 76.7%,respectively,in the validating stage.In the training and validation stages,the mean AUC values of the combined model were 92.4% and 87.1%,respectively.The combined model provides greater prediction accuracy and model robustness than one single model.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20603)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20030301)。
文摘The eastern road section of the ChinaPakistan Economic Corridor(CPEC)traverses the challenging terrain of northern Pakistan,where frequent landslides pose a significant threat to socioeconomic development and infrastructure.However,the insufficient data on landslide hazards presents a substantial challenge to practical mitigation efforts.Therefore,we conducted an extensive study to gain insight into landslide assessment along the Mansehra-Muzaffarabad-Mirpur and Mangla(MMMM)Expressway.This study involved preparing a landslide inventory,analyzing landslide causative factors,and developing landslide susceptibility models(LSMs)using published data,remote sensing interpretations,field excursions and integrated predictive techniques.We first used Pearson's correlation coefficient(PCC),variable importance factors(VIF),and information gain ratio(IGR)to evaluate multicollinearity among the selected landslide causative factors(LCFs).Then,the topographic roughness index(TRI)with VIF>5 and PCC>0.7 was considered a redundant factor and thus removed before the data modeling.Finally,we adopted multiple machine-learning methods to analyze landslide susceptibility.The results indicate that the landslide inventory contains 1,776 events,of which 674 were classified based on geometrical and lithological configurations.The IGR results show that the rainfall,lithology,PGA,drainage density,slope,and distance to fault are the most effective LCFs.The AUC values for random forest(RF)(0.901),extreme gradient boosting(XGBoost)(0.884),and K-nearest neighbor(KNN)(0.872)remained higher than evidential belief function(EBF)(0.833),weight of evidence(WoE)(0.820),and certainty factor(CF)(0.810),respectively.The RF model outperformed all other models in terms of prediction.However,these models are accurate but newer in the area;thus,susceptible zones were verified with comprehensive field investigations.The northern and central regions accounted for the high and very high susceptibility classes in the final landslide susceptibility mapping(LSM)compared to the southern areas.
文摘The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(2011BAK12B09)China Special Project of Basic Work of Science and Technology(2011FY110100-2)
文摘Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.
基金This research is funded by the National Natural Science Foundation of China(Grant Nos.41807285 and 51679117)Key Project of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(SKLGP2019Z002)+3 种基金the National Science Foundation of Jiangxi Province,China(20192BAB216034)the China Postdoctoral Science Foundation(2019M652287 and 2020T130274)the Jiangxi Provincial Postdoctoral Science Foundation(2019KY08)Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)。
文摘Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807192,41790441)Innovation Capability Support Program of Shaanxi(Grant No.2020KJXX-005)Natural Science Basic Research Program of Shaanxi(Grant Nos.2019JLM-7,2019JQ-094)。
文摘As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.