Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase...Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.展开更多
针对高速公路上因驾驶员注意力不集中或疲劳容易发生车辆偏离车道事故的问题,提出基于动态车辆横越车道线时间(Time to lane crossing,TLC)触发阈值的辅助控制决策策略和基于差动制动的车道偏离辅助控制方法。根据车-路航向角偏差、路...针对高速公路上因驾驶员注意力不集中或疲劳容易发生车辆偏离车道事故的问题,提出基于动态车辆横越车道线时间(Time to lane crossing,TLC)触发阈值的辅助控制决策策略和基于差动制动的车道偏离辅助控制方法。根据车-路航向角偏差、路面附着、车速、驾驶员反应时间及执行机构响应时间实时计算动态TLC触发阈值,进行预警和辅助控制决策。在辅助控制决策的基础上,基于预瞄点处的车-路偏差、车辆状态和道路附着限制计算期望的横摆响应,设计滑模控制器控制辅助横摆力矩,通过差动制动产生横摆力矩,使车辆横摆响应跟踪目标值,达到车道偏离辅助控制的目的。在Carsim/Simulink联合仿真平台上对基于差动制动的车道偏离辅助控制方法进行仿真试验,研究结果表明所提出方法将车辆限制在车道范围内,有效避免车道偏离事故发生。建立由CarsimRT/LabviewRT实时平台及转向、制动执行机构组成的车道偏离辅助控制系统快速原型试验台架,对基于差动制动的辅助控制方法进行台架试验,其结果与Carsim/simulink联合仿真结果基本一致。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51605199,U20A20333,52225212)Six Talent Peak Funding Projects in Jiangsu Province of China(Grant No.2019-GDZB-084)Key Science and Technology Support Program in Taizhou City of China(Grant No.TG202307).
文摘Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.
文摘针对高速公路上因驾驶员注意力不集中或疲劳容易发生车辆偏离车道事故的问题,提出基于动态车辆横越车道线时间(Time to lane crossing,TLC)触发阈值的辅助控制决策策略和基于差动制动的车道偏离辅助控制方法。根据车-路航向角偏差、路面附着、车速、驾驶员反应时间及执行机构响应时间实时计算动态TLC触发阈值,进行预警和辅助控制决策。在辅助控制决策的基础上,基于预瞄点处的车-路偏差、车辆状态和道路附着限制计算期望的横摆响应,设计滑模控制器控制辅助横摆力矩,通过差动制动产生横摆力矩,使车辆横摆响应跟踪目标值,达到车道偏离辅助控制的目的。在Carsim/Simulink联合仿真平台上对基于差动制动的车道偏离辅助控制方法进行仿真试验,研究结果表明所提出方法将车辆限制在车道范围内,有效避免车道偏离事故发生。建立由CarsimRT/LabviewRT实时平台及转向、制动执行机构组成的车道偏离辅助控制系统快速原型试验台架,对基于差动制动的辅助控制方法进行台架试验,其结果与Carsim/simulink联合仿真结果基本一致。