Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase...Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
In real-world scenarios,the uncertainty of measurements cannot be handled efficiently by traditional model predictive control(MPC).A stochastic MPC(SMPC)method for handling the uncertainty of states in autonomous driv...In real-world scenarios,the uncertainty of measurements cannot be handled efficiently by traditional model predictive control(MPC).A stochastic MPC(SMPC)method for handling the uncertainty of states in autonomous driving lane-keeping scenarios is presented in this paper.A probabilistic system is constructed by considering the variance of states.The probabilistic problem is then transformed into a solvable deterministic optimization problem in two steps.First,the cost function is separated into mean and variance components.The mean component is calculated online,whereas the variance component can be calculated offline.Second,Cantelli’s inequality is adopted for the deterministic reformulation of constraints.Consequently,the original probabilistic problem is transformed into a quadratic programming problem.To validate the feasibility and effectiveness of the proposed control method,we compared the SMPC controller with a traditional MPC controller in a lane-keeping scenario.The results demonstrate that the SMPC controller is more effective overall and produces smaller steady-state distance errors.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51605199,U20A20333,52225212)Six Talent Peak Funding Projects in Jiangsu Province of China(Grant No.2019-GDZB-084)Key Science and Technology Support Program in Taizhou City of China(Grant No.TG202307).
文摘Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
基金the Science and Technology Commission of Shanghai Municipality(No.19511103503)。
文摘In real-world scenarios,the uncertainty of measurements cannot be handled efficiently by traditional model predictive control(MPC).A stochastic MPC(SMPC)method for handling the uncertainty of states in autonomous driving lane-keeping scenarios is presented in this paper.A probabilistic system is constructed by considering the variance of states.The probabilistic problem is then transformed into a solvable deterministic optimization problem in two steps.First,the cost function is separated into mean and variance components.The mean component is calculated online,whereas the variance component can be calculated offline.Second,Cantelli’s inequality is adopted for the deterministic reformulation of constraints.Consequently,the original probabilistic problem is transformed into a quadratic programming problem.To validate the feasibility and effectiveness of the proposed control method,we compared the SMPC controller with a traditional MPC controller in a lane-keeping scenario.The results demonstrate that the SMPC controller is more effective overall and produces smaller steady-state distance errors.