This treatise analyzes the coupled nonlinear system of the model for the ion sound and Langmuir waves.The modified(G'/G)-expansion procedure is utilized to raise new closed-form wave solutions.Those solutions are ...This treatise analyzes the coupled nonlinear system of the model for the ion sound and Langmuir waves.The modified(G'/G)-expansion procedure is utilized to raise new closed-form wave solutions.Those solutions are investigated through hyperbolic,trigonometric and rational function.The graphical design makes the dynamics of the equations noticeable.It provides the mathematical foundation in diverse sectors of underwater acoustics,electromagnetic wave propagation,design of specific optoelectronic devices and physics quantum mechanics.Herein,we concluded that the studied approach is advanced,meaningful and significant in implementing many solutions of several nonlinear partial differential equations occurring in applied sciences.展开更多
Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations ...Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations can be generated to alter the wave damping/growth rate. In this paper, we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found. The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized (r, q) distribution function, which is the generalized form of the kappa and Maxwellian distribution functions. In the limiting case of r = 0 and q→∞, it reduces to the classical Maxwellian distribution function, and when r = 0 and q→k +1, it reduces to the kappa distribution function.展开更多
The dispersion of Langmuir wave(LW)in an unmagnetized collisionless plasma with regularized Kappa distributed electrons is investigated from the kinetic theory.The frequency and damping rate of LW are analyzed for the...The dispersion of Langmuir wave(LW)in an unmagnetized collisionless plasma with regularized Kappa distributed electrons is investigated from the kinetic theory.The frequency and damping rate of LW are analyzed for the parameters relating to the source region of a typeⅢsolar radio burst.It is found that the linear behavior of LW is greatly modified by the suprathermal indexκand the exponential cutoff parameterα.In the regionκ<1.5,the damping rate of LW will be much larger than the one with Maxwellian distributed electrons.Hence,the nonlinear process of LW in lowκregion may exhibit different properties in comparison with the one in largeκregion.展开更多
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold p...In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.展开更多
Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quant...Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.展开更多
Parametric instabilities induced by the nonlinear interaction between high frequency quantum Langmuir waves and low frequency quantum ion-acoustic waves in quantum plasmas with the electron exchange-correlation effect...Parametric instabilities induced by the nonlinear interaction between high frequency quantum Langmuir waves and low frequency quantum ion-acoustic waves in quantum plasmas with the electron exchange-correlation effects are presented.By using the quantum hydrodynamic equations with the electron exchange-correlation correction,we obtain an effective quantum Zaharov model,which is then used to derive the modified dispersion relations and the growth rates of the decay and four-wave instabilities.The influences of the electron exchange-correlation effects and the quantum effects on the existence of quantum Langmuir waves and the parametric instabilities are discussed in detail.It is shown that the electron exchange-correlation effects and quantum effects are strongly coupled.The quantum Langmuir wave can propagate in quantum plasmas only when the electron exchange-correlation effects and the quantum effects satisfy a certain condition.The electron exchange-correlation effects tend to enhance the parametric instabilities,while quantum effects suppress the instabilities.展开更多
文摘This treatise analyzes the coupled nonlinear system of the model for the ion sound and Langmuir waves.The modified(G'/G)-expansion procedure is utilized to raise new closed-form wave solutions.Those solutions are investigated through hyperbolic,trigonometric and rational function.The graphical design makes the dynamics of the equations noticeable.It provides the mathematical foundation in diverse sectors of underwater acoustics,electromagnetic wave propagation,design of specific optoelectronic devices and physics quantum mechanics.Herein,we concluded that the studied approach is advanced,meaningful and significant in implementing many solutions of several nonlinear partial differential equations occurring in applied sciences.
基金Project supported by the Pakistan Science Foundation Project No.PSF/Res/P-GCU/Phys.(143)the National Natural Science Foundation of China(Grant Nos.41074114 and 41274146)the Specialized Research Fund for State Key Laboratories of China
文摘Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves. When a laser or electron beam passes through a dense plasma, hot low density electron populations can be generated to alter the wave damping/growth rate. In this paper, we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found. The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized (r, q) distribution function, which is the generalized form of the kappa and Maxwellian distribution functions. In the limiting case of r = 0 and q→∞, it reduces to the classical Maxwellian distribution function, and when r = 0 and q→k +1, it reduces to the kappa distribution function.
文摘The dispersion of Langmuir wave(LW)in an unmagnetized collisionless plasma with regularized Kappa distributed electrons is investigated from the kinetic theory.The frequency and damping rate of LW are analyzed for the parameters relating to the source region of a typeⅢsolar radio burst.It is found that the linear behavior of LW is greatly modified by the suprathermal indexκand the exponential cutoff parameterα.In the regionκ<1.5,the damping rate of LW will be much larger than the one with Maxwellian distributed electrons.Hence,the nonlinear process of LW in lowκregion may exhibit different properties in comparison with the one in largeκregion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40931054)the National Basic Research Program of China (Grant No. 2011CB811404)the Higher Education Commission of China (Grant No. 20-1886/R&D/10)
文摘In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11274255 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No.2011GS04358)the Creation of Science and Technology of Northwest Normal University of China (Grant No.NWNU-KJCXGC-03-48)
文摘Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975114)the Foundation for the Creation of Science and Technology of the Northwest Normal University of China (Grant No. NWNU-KJCXGC-03-48)
文摘Parametric instabilities induced by the nonlinear interaction between high frequency quantum Langmuir waves and low frequency quantum ion-acoustic waves in quantum plasmas with the electron exchange-correlation effects are presented.By using the quantum hydrodynamic equations with the electron exchange-correlation correction,we obtain an effective quantum Zaharov model,which is then used to derive the modified dispersion relations and the growth rates of the decay and four-wave instabilities.The influences of the electron exchange-correlation effects and the quantum effects on the existence of quantum Langmuir waves and the parametric instabilities are discussed in detail.It is shown that the electron exchange-correlation effects and quantum effects are strongly coupled.The quantum Langmuir wave can propagate in quantum plasmas only when the electron exchange-correlation effects and the quantum effects satisfy a certain condition.The electron exchange-correlation effects tend to enhance the parametric instabilities,while quantum effects suppress the instabilities.