The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment...The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment and the inhibition is mainly based on the blocking effect.展开更多
This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodge...This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodgett films, Self Assembling Monolayers (SAMs), ellipsometry, and atomic force microscopy (AFM). The monolayers of caldarchaeol-PO<sub>4 </sub>were stable on the solid surface amino-silanised silicon wafer. The organizations of molecular monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method and SAMs have been analyzed. The surface of pressure in Langmuir-Blodgett processing is carried out monolayers caldarchaeol-PO<sub>4</sub> more flat island inhomogeneous. Another method of monolayers caldarchaeol-PO<sub>4</sub> by SAMs is showed a large flat domain. Monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method seems to be stable and chemically resistant after washing with organic solvent and an additional treatment ultrasonification with various thickness lipids arround 2 nm to 6 nm. Conversely, monolayer caldarchaeol-PO<sub>4</sub> by SAMs appears fewer than monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method, the thickness of various from 1 nm to 3 nm.展开更多
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str...The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.展开更多
The real-time second harmonic generation was employed to investigate the[2+2]photodimerization of styrylquinoline(SQ) derivatives in Langmuir-Blodgett(LB) monolayers deposited from aqueous subphases with differen...The real-time second harmonic generation was employed to investigate the[2+2]photodimerization of styrylquinoline(SQ) derivatives in Langmuir-Blodgett(LB) monolayers deposited from aqueous subphases with different acidity.It was discovered that the photodimerization rate constant significantly decreased upon the addition of acid.The additional atomic force microscopy measurements revealed that surface morphologies were correlated to the photodimerization kinetics.These experimental results provide direct evidence for the topo-chemical mechanisms of[2+2]photodimerization in LB films.The current study demonstrates that the intermolecular interactions and aggregation structures play important roles in the photochemical properties at surfaces.展开更多
Quantum anomalous Hall(QAH) insulators have highly potential applications in spintronic device. However,available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1...Quantum anomalous Hall(QAH) insulators have highly potential applications in spintronic device. However,available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN_(2) monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of C = ±3 from first-principles calculations. Without spin-orbit coupling(SOC),the 1T-PrN_(2) monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number(±1) can be produced when the magnetic moment breaks all twofold rotational symmetries in the xy plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the z-axis, the system exhibits high Chern number QAH effect with C = ±3.Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.展开更多
By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained th...By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion.展开更多
This study investigated the behavior and molecular organization of synthetic artificial mimic molecules that resemble the following tetraether lipids: di-O-hexadecyl-glycero-3-phosphatidyl-glycerol (DHGPG) and bis-4-d...This study investigated the behavior and molecular organization of synthetic artificial mimic molecules that resemble the following tetraether lipids: di-O-hexadecyl-glycero-3-phosphatidyl-glycerol (DHGPG) and bis-4-dodecylphenyl-12-phosphate. These molecules were analyzed using Langmuir film balance, ellipsometry and atomic force microscopy. The monolayer Langmuir-Blodgett films of DHGPG and bis-4-dodecylphenyl-12-phosphate were stable on the solid surface silicon wafers. The ellipsometry and AFM results showed that monolayers Langmuir-Blodgett films of DHGPG and bis-4-dodecylphenyl-12-phosphate were present, and the thickness of the observed films varied from 1.2 - 5.0 nm.展开更多
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical pr...Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).展开更多
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for prepa...The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise.It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities.Here,we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane.By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope(STEM),we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice.The resultant SiC monolayers seamlessly connect with the graphene lattice,forming a planar structure distinct by a wide direct bandgap.Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion,providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional(2D)monolayers.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and t...Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.展开更多
Urea synthesis through the simultaneous electrocatalytic reduction of N_(2)and CO_(2)molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production,in which the devel...Urea synthesis through the simultaneous electrocatalytic reduction of N_(2)and CO_(2)molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production,in which the development of stable,highly efficient,and highly selective catalysts to boost the chemisorption,activation,and coupling of inert N_(2)and CO_(2)molecules remains rather challenging.Herein,by means of density functional theory computations,we proposed a new class of two-dimensional nanomaterials,namely,transition-metal phosphide monolayers(TM_(2)P,TM=Ti,Fe,Zr,Mo,and W),as the potential electrocatalysts for urea production.Our results showed that these TM_(2)P materials exhibit outstanding stability and excellent metallic properties.Interestingly,the Mo_(2)P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier(0.35 eV)for C-N coupling,low limiting potential(-0.39 V),and significant suppressing effects on the competing side reactions.The outstanding catalytic activity of the Mo_(2)P monolayer can be ascribed to its optimal adsorption strength with the key^(*)NCON species due to its moderate positive charges on the Mo active sites.Our findings not only propose a novel catalyst with high-efficiency and high-selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.展开更多
Functionalizing and patterning of the silicon surface can be realized simultaneously by the chemomechanical method. The oxide-coated crystalline silicon (100) surface is scratched with a diamond tool in the presence...Functionalizing and patterning of the silicon surface can be realized simultaneously by the chemomechanical method. The oxide-coated crystalline silicon (100) surface is scratched with a diamond tool in the presence of aryldiazonium salt (C6H5N2BF4). Scratching activates the silicon surface by removing the passivation oxide layer to expose fresh Si atoms. The sur- face morphologies before and after chemomechanical reaction are characterized with atomic force microscopy. Time-of-flight secondary ion mass spectroscopy confirms the presence of C6H5 and provides evidence for the formation of self-assembled monolayer (SAM) on silicon surface via Si-C covalent bonds by scratching the silicon in the presence of C6H5N2BF4. C6H5 groups further bond with surface Si atoms via Si-C covalent bonds as confirmed from infrared spectroscopy results. We propose that chemomechanical reaction, which occurred during scratching the silicon surface, produce C6H5 groups from aryldiazonium salt. The relevant adhesion of SAM is measured. It is found that SAM can reduce the adhesion of silicon. The monolayer can be used as anti-adhesion monolayer for micro/nanoelectromechanical systems components under different environments and operating conditions.展开更多
Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbati...Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,展开更多
A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic...A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .展开更多
In this paper, we use a molecular theory to study the anomalous switching of ssDNA monolayers. Here, both ssDNA- water and water-water hydrogen bonds and their explicit coupling to the ssDNA conformations are consider...In this paper, we use a molecular theory to study the anomalous switching of ssDNA monolayers. Here, both ssDNA- water and water-water hydrogen bonds and their explicit coupling to the ssDNA conformations are considered. We find that hydrogen bonding becomes a key element in inducing the anomalous switching of ssDNA monolayers. This finding accords well with the experimental observations. Based on our theoretical model, we predict that the anomalous switching induced by water vapor will be applicable to a wide range of hydrogen bonds polymers, and ssDNA-water hydrogen bonds and water-water hydrogen bonds hybridization will lead to the hydrogen-bond network formation of 3D ssDNA monolayers.展开更多
A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared fr...A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.展开更多
Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound ...Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.展开更多
The scaled-up synthesis of organic-free monolayer nanomaterials is highly desirable,especially in obtaining green energy by electrocatalysis.In this study,a method for the scaled-up synthesis of the series of monolaye...The scaled-up synthesis of organic-free monolayer nanomaterials is highly desirable,especially in obtaining green energy by electrocatalysis.In this study,a method for the scaled-up synthesis of the series of monolayer layered double hydroxides(LDHs)without the addition of organic solvents is reported via the separate nucleation and aging steps process.The resulting monolayer LDHs with the thicknesses of less than 1 nm showed a narrow thickness distribution.X-ray absorption fine-structure revealed that monolayer NiFe-LDH nanosheets have a number of oxygen and metal vacancies defects.As a practical application,monolayer NiFe-LDH nanosheets containing defects showed an enhanced electrocatalytic water oxidation activity compared with that of bulk NiFe-LDH.Density functional theory calculations uncovered that excellent catalytic activity is attributed to vacancies defects.The proposed method is an economical and universally applicable strategy for the scaled-up production of monolayer LDHs.展开更多
基金The project is supported by National Natural Science Foundation of China Corrosion Science Laboratory, Chinese Academy of Sciences.
文摘The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment and the inhibition is mainly based on the blocking effect.
文摘This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodgett films, Self Assembling Monolayers (SAMs), ellipsometry, and atomic force microscopy (AFM). The monolayers of caldarchaeol-PO<sub>4 </sub>were stable on the solid surface amino-silanised silicon wafer. The organizations of molecular monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method and SAMs have been analyzed. The surface of pressure in Langmuir-Blodgett processing is carried out monolayers caldarchaeol-PO<sub>4</sub> more flat island inhomogeneous. Another method of monolayers caldarchaeol-PO<sub>4</sub> by SAMs is showed a large flat domain. Monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method seems to be stable and chemically resistant after washing with organic solvent and an additional treatment ultrasonification with various thickness lipids arround 2 nm to 6 nm. Conversely, monolayer caldarchaeol-PO<sub>4</sub> by SAMs appears fewer than monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method, the thickness of various from 1 nm to 3 nm.
基金Project supported by the National Natural Science Foundation of China (Grants No. 12075201)the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428)+1 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193)the Special Program for Applied Research on Supercomputation of the NSFC–Guangdong Joint Fund (the second phase)。
文摘The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.
基金supported by the National Natural Science Foundation of China(Nos.21473217,21227802 and 21303216)the Chinese Ministry of Science and Technology(No.2013CB834504)
文摘The real-time second harmonic generation was employed to investigate the[2+2]photodimerization of styrylquinoline(SQ) derivatives in Langmuir-Blodgett(LB) monolayers deposited from aqueous subphases with different acidity.It was discovered that the photodimerization rate constant significantly decreased upon the addition of acid.The additional atomic force microscopy measurements revealed that surface morphologies were correlated to the photodimerization kinetics.These experimental results provide direct evidence for the topo-chemical mechanisms of[2+2]photodimerization in LB films.The current study demonstrates that the intermolecular interactions and aggregation structures play important roles in the photochemical properties at surfaces.
基金supported by National Natural Science Foundation of China (Grant No. 11874092)the Fok Ying Tong Education Foundation, China (Grant No. 161005)the Science Fund for Distinguished Young Scholars of Hunan Province (Grant No. 2021JJ10039)。
文摘Quantum anomalous Hall(QAH) insulators have highly potential applications in spintronic device. However,available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN_(2) monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of C = ±3 from first-principles calculations. Without spin-orbit coupling(SOC),the 1T-PrN_(2) monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number(±1) can be produced when the magnetic moment breaks all twofold rotational symmetries in the xy plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the z-axis, the system exhibits high Chern number QAH effect with C = ±3.Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974395 and 12188101)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)+1 种基金the National Key R&D Program of China(Grant Nos.2022YFA1403800 and 2022YFA1403400)the Center for Materials Genome。
文摘By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion.
文摘This study investigated the behavior and molecular organization of synthetic artificial mimic molecules that resemble the following tetraether lipids: di-O-hexadecyl-glycero-3-phosphatidyl-glycerol (DHGPG) and bis-4-dodecylphenyl-12-phosphate. These molecules were analyzed using Langmuir film balance, ellipsometry and atomic force microscopy. The monolayer Langmuir-Blodgett films of DHGPG and bis-4-dodecylphenyl-12-phosphate were stable on the solid surface silicon wafers. The ellipsometry and AFM results showed that monolayers Langmuir-Blodgett films of DHGPG and bis-4-dodecylphenyl-12-phosphate were present, and the thickness of the observed films varied from 1.2 - 5.0 nm.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202700 and 2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Fundamental Research Funds for the Central Universities,and Research Funds of Renmin University,China(Grant No.22XNKJ30)supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University,China。
文摘Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
基金supports from the Electron Microscopy Center at the University of Chinese Academy of Sciencesfinancially supported by the Ministry of Science and Technology (MOST)of China (Grant No.2018YFE0202700)+3 种基金the Beijing Outstanding Young Scientist Program (Grant No.BJJWZYJH01201914430039)the China National Postdoctoral Program for Innovative Talents (Grant No.BX2021301)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (Grants No.22XNKJ30)。
文摘The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise.It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities.Here,we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane.By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope(STEM),we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice.The resultant SiC monolayers seamlessly connect with the graphene lattice,forming a planar structure distinct by a wide direct bandgap.Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion,providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional(2D)monolayers.
基金supported by National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039696,2022R1A2C2009412)
文摘Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
基金financially supported in China by Natural Science Funds for Distinguished Young Scholars of Heilongjiang Province(No.JC2018004)Natural Science Foundation of Heilongjiang Province of China(No.TD2020B001)in the USA by NSF-CREST Center for Innovation,Research,and Education in Environmental Nanotechnology(CIRE2N)(No.HRD-1736093)
文摘Urea synthesis through the simultaneous electrocatalytic reduction of N_(2)and CO_(2)molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production,in which the development of stable,highly efficient,and highly selective catalysts to boost the chemisorption,activation,and coupling of inert N_(2)and CO_(2)molecules remains rather challenging.Herein,by means of density functional theory computations,we proposed a new class of two-dimensional nanomaterials,namely,transition-metal phosphide monolayers(TM_(2)P,TM=Ti,Fe,Zr,Mo,and W),as the potential electrocatalysts for urea production.Our results showed that these TM_(2)P materials exhibit outstanding stability and excellent metallic properties.Interestingly,the Mo_(2)P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier(0.35 eV)for C-N coupling,low limiting potential(-0.39 V),and significant suppressing effects on the competing side reactions.The outstanding catalytic activity of the Mo_(2)P monolayer can be ascribed to its optimal adsorption strength with the key^(*)NCON species due to its moderate positive charges on the Mo active sites.Our findings not only propose a novel catalyst with high-efficiency and high-selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.
基金We thank Prof. Yang Gan of Harbin Institute of Technology, and Prof. Fu-long Yuan of Heilongjiang University for the help in the experiments. This work was supported by the Center for Precision Engineering of Harbin Institute of Technology, the Youth the Colleges and Universities in Heilongjiang Province in 2010 (No.1155G54), the Training Fund Project of Jiamusi University (No.RC2009-037), and the National Natural Science Foundation of China (No.51105174).
文摘Functionalizing and patterning of the silicon surface can be realized simultaneously by the chemomechanical method. The oxide-coated crystalline silicon (100) surface is scratched with a diamond tool in the presence of aryldiazonium salt (C6H5N2BF4). Scratching activates the silicon surface by removing the passivation oxide layer to expose fresh Si atoms. The sur- face morphologies before and after chemomechanical reaction are characterized with atomic force microscopy. Time-of-flight secondary ion mass spectroscopy confirms the presence of C6H5 and provides evidence for the formation of self-assembled monolayer (SAM) on silicon surface via Si-C covalent bonds by scratching the silicon in the presence of C6H5N2BF4. C6H5 groups further bond with surface Si atoms via Si-C covalent bonds as confirmed from infrared spectroscopy results. We propose that chemomechanical reaction, which occurred during scratching the silicon surface, produce C6H5 groups from aryldiazonium salt. The relevant adhesion of SAM is measured. It is found that SAM can reduce the adhesion of silicon. The monolayer can be used as anti-adhesion monolayer for micro/nanoelectromechanical systems components under different environments and operating conditions.
文摘Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,
基金Supported by the National Natural Science Foundation of China(Nos.20473029and20573041)Program for Changjiang Scholars and Innovative Research Team in the University of China(No.IRT0422)+3 种基金Program for New Century Excellent Talents in theUniversity of ChinaScientific Research Foundation for the Returned Overseas Chinese Scholars Initiated State Education Ministry of Chinathe 111 Project of China(No.B06009).
文摘A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21264016,11464047,and 21364016)the National Basic Research Program of China(Grant No.2012CB821500)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2013211A053)
文摘In this paper, we use a molecular theory to study the anomalous switching of ssDNA monolayers. Here, both ssDNA- water and water-water hydrogen bonds and their explicit coupling to the ssDNA conformations are considered. We find that hydrogen bonding becomes a key element in inducing the anomalous switching of ssDNA monolayers. This finding accords well with the experimental observations. Based on our theoretical model, we predict that the anomalous switching induced by water vapor will be applicable to a wide range of hydrogen bonds polymers, and ssDNA-water hydrogen bonds and water-water hydrogen bonds hybridization will lead to the hydrogen-bond network formation of 3D ssDNA monolayers.
基金financially supported by the Scientific Research Foundation of State Education Ministry of China (Jiaowaisiliu[2008]890)Research Foundation of Education Department of Hebei Province of China(No. 2007132)
文摘A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation(Grant No.0418010)the Joint Foundation of Guizhou Normal University(Grant No.7341)
文摘Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.
基金supported by the National Nature Science Foundation of China(U1707603,21878008,21625101,U1507102,21922801)the Beijing Natural Science Foundation(2182047,2202036)the Fundamental Research Funds for the Central Universities(XK1802-6,XK1902,12060093063,2312018RC07)。
文摘The scaled-up synthesis of organic-free monolayer nanomaterials is highly desirable,especially in obtaining green energy by electrocatalysis.In this study,a method for the scaled-up synthesis of the series of monolayer layered double hydroxides(LDHs)without the addition of organic solvents is reported via the separate nucleation and aging steps process.The resulting monolayer LDHs with the thicknesses of less than 1 nm showed a narrow thickness distribution.X-ray absorption fine-structure revealed that monolayer NiFe-LDH nanosheets have a number of oxygen and metal vacancies defects.As a practical application,monolayer NiFe-LDH nanosheets containing defects showed an enhanced electrocatalytic water oxidation activity compared with that of bulk NiFe-LDH.Density functional theory calculations uncovered that excellent catalytic activity is attributed to vacancies defects.The proposed method is an economical and universally applicable strategy for the scaled-up production of monolayer LDHs.