为研究兰新高铁大风区段挡风墙对接触网正馈线气动特性的影响,基于流体力学建立正馈线流场模型,分别针对无墙和有墙的情况,分析正馈线在不同风速下气动特性的变化规律。研究结果表明:挡风墙对气流有较强的汇聚作用,大幅增加了正馈线周...为研究兰新高铁大风区段挡风墙对接触网正馈线气动特性的影响,基于流体力学建立正馈线流场模型,分别针对无墙和有墙的情况,分析正馈线在不同风速下气动特性的变化规律。研究结果表明:挡风墙对气流有较强的汇聚作用,大幅增加了正馈线周围的空气流动速度。随着来风速度的增大,挡风墙后正馈线处风攻角也随之增大,当风速达到15 m/s 及以上时,攻角基本稳定在29°~30°之间。有墙条件下正馈线升力及阻力系数幅值加大且呈现无规律振荡,挡风墙对正馈线气动力的增大效应是导致正馈线发生低频高幅舞动的主要原因。挡风墙外形尺寸对于正馈线气动特性有重要影响,选择合适的高度和截面宽度可一定程度改善正馈线气动特性,以减少舞动的发生。展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
文摘为研究兰新高铁大风区段挡风墙对接触网正馈线气动特性的影响,基于流体力学建立正馈线流场模型,分别针对无墙和有墙的情况,分析正馈线在不同风速下气动特性的变化规律。研究结果表明:挡风墙对气流有较强的汇聚作用,大幅增加了正馈线周围的空气流动速度。随着来风速度的增大,挡风墙后正馈线处风攻角也随之增大,当风速达到15 m/s 及以上时,攻角基本稳定在29°~30°之间。有墙条件下正馈线升力及阻力系数幅值加大且呈现无规律振荡,挡风墙对正馈线气动力的增大效应是导致正馈线发生低频高幅舞动的主要原因。挡风墙外形尺寸对于正馈线气动特性有重要影响,选择合适的高度和截面宽度可一定程度改善正馈线气动特性,以减少舞动的发生。
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.