Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is...In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.展开更多
Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary in...Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.展开更多
The high-order boundary conditions for the problems cf Laplace equation in infinite region have been developed. The improvement in accuracy for numerical solution is achieved by imposing the high-order boundary condit...The high-order boundary conditions for the problems cf Laplace equation in infinite region have been developed. The improvement in accuracy for numerical solution is achieved by imposing the high-order boundary conditions on the exterior boundarv of a reduced finite region in which the numerical method is used. So both the computing efforts and the required storage in computer are reduced. The numerical examples show that the 1st-order boundary condition approaches to the exact boundary condition and it is clearly superior to the traditional boundary condition and the 2nd-order boundary condition.展开更多
The solutions of the Laplace equation in n-dimensional space are studied. The angular eigenfunctions have the form of associated Jacob/polynomials. The radial solution of the Helmholtz equation is derived.
We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z =...We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 〈 z 〈 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.展开更多
In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full pol...In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full polynomial space P_(k)is to use a much smaller number of basis functions to achieve the same accuracy when k≥2.The optimal rate of convergence is derived in both H^(1)and L^(2)norms.Numerical experiments have been conducted to verify the theoretical error estimates.In addition,numerical comparisons of using the P_(2)-harmonic polynomial space and using the standard P_(2)polynomial space are presented.展开更多
Laplace's tidal equations are of great importance in various fields of geophysics. Here, the special case of zonal symmetry (zonal wavenumber m = 0) is investigated, where degenerate sets of eigensolutions appear....Laplace's tidal equations are of great importance in various fields of geophysics. Here, the special case of zonal symmetry (zonal wavenumber m = 0) is investigated, where degenerate sets of eigensolutions appear. New results are presented for the inclusion of dissipative processes and the case of unstable conditions. In both instances the (nonzero) eigenfrequencies are complex. In the latter case, additional stable (i.e. real) eigenfrequencies appear in the numerical results for the absolute value of the Lambparameter ε being larger than a critical value εc. Further, it is shown that any degeneracies are removed through the inclusion of dissipation. Moreover, asymptotic relations are derived employing the relation of Laplace's tidal equations for m = 0 to the spheroidal differential equation. The implications of these findings to numerical techniques are demonstrated and results of computations are presented.展开更多
In this paper, we establish the partial Schauder estimates for the Kohn Laplace equation in the Heisenberg group based on the mean value theorem, the Taylor formula and a priori estimates for the derivatives of the Ne...In this paper, we establish the partial Schauder estimates for the Kohn Laplace equation in the Heisenberg group based on the mean value theorem, the Taylor formula and a priori estimates for the derivatives of the Newton potential.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are...In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.展开更多
For higher accuracy in simulating the transformation of three dimensional waves, in consideration of the advantages of constant panels and linear elements, a combined boundary elements is applied in this research. The...For higher accuracy in simulating the transformation of three dimensional waves, in consideration of the advantages of constant panels and linear elements, a combined boundary elements is applied in this research. The method can be used to remove the transverse vibration due to the accumulation of computational errors. A combined boundary condition of sponge layer and Sommerfeld radiation condition is used to remove the reflected waves from the computing domain. By following the water particle on the water surface, the third order Stokes wave transform is simulated by the numerical wave flume technique. The computed results are in good agreement with theoretical ones.展开更多
We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb netwo...We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.展开更多
The numerical mode of nonlinear wave transformation based on both the Laplace equation for water field and the Bernoulli equation for water surface is a kind of time-domain boundary problem with initial conditions. An...The numerical mode of nonlinear wave transformation based on both the Laplace equation for water field and the Bernoulli equation for water surface is a kind of time-domain boundary problem with initial conditions. And the basis for establishing the numerical mode of nonlinear wave in time domain is to trace the position of wave free surface and to calculate the instantaneous surface height and surface potential function. This paper firstly utilizes the ‘0-1' combined BEM to separate the boundary by means of discretization of Green's integral equation based on the Laplace equation, then separates the free surface of wave with FEM and derives the FEM equation of wave surface that satisfies the nonlinear boundary conditions. By jointly solving the above BEM and FEM equations, the wave potential and surface height could be obtained with iteration in time domain. Thus a new kind of nonlinear numerical mode is established for calculating wave transformation. The wave test in the numerical wave tank shows that the numerical simulation with this mode is of high accuracy.展开更多
Compliant offshore structures such as spars,tension leg platforms(TLPs) and semi-submersibles have been dramatically improved in recent years due to their capability for deep water operation. Waves are the most import...Compliant offshore structures such as spars,tension leg platforms(TLPs) and semi-submersibles have been dramatically improved in recent years due to their capability for deep water operation. Waves are the most important environmental phenomenon affecting these offshore structures. Estimation of wave forces is vital in offshore structure design. For large compliant offshore platforms,Morrison's equation is not valid anymore and usually diffraction theory is used. In this research,by using the finite difference method,a detailed analysis of the first-order diffraction of monochromatic waves on a large cylinder as a structural element is performed to solve the radiation and diffraction potentials. The results showed that the developed model is a reliable tool to estimate the wave forces and hydrodynamic coefficients on large structure elements when wave diffraction and radiation are considered.展开更多
Various water wave problems involving an infinitely long horizontal cylinder floating on the surface water were investigated in the literature of linearized theory of water waves employing a general multipole expansio...Various water wave problems involving an infinitely long horizontal cylinder floating on the surface water were investigated in the literature of linearized theory of water waves employing a general multipole expansion for the wave potential. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace's equation (for non-oblique waves in two dimensions) or two-dimensional Helmholz equation (for oblique waves) satisfying the free surface condition and decaying rapidly away from the point of singularity. The method of constructing these wave-free potentials is presented here in a systematic manner for a number of situations such as deep water with a free surface, neglecting or taking into account the effect of surface tension, or with an ice-cover modelled as a thin elastic plate floating on water.展开更多
There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle th...There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.展开更多
SUN Da-peng BAO Wei-bin, WU Hao and LI Yu-cheng ( In this paper the 0-1 combined BEM is adopted to subdivide the computational domain boundary, and to discretize the Green's integral expression based on Laplace equ...SUN Da-peng BAO Wei-bin, WU Hao and LI Yu-cheng ( In this paper the 0-1 combined BEM is adopted to subdivide the computational domain boundary, and to discretize the Green's integral expression based on Laplace equation. The FEM is used to subdivide the wave surface and deduce the surface equation which satisfies the nonlinear boundary conditions on the surface. The equations with potential function and wave surface height as an unknown quantity by application of Taylor expansion approach can be solved by iteration within the time step. In m-time iteration within the computational process of time step (n-1)At to nat, the results of the previous iteration are taken as the initial value of the two-order unknown terms in the present iteration. Thus, an improved tracking mode of nonlinear wave surface is estabIished, and numerical results of wave tank test indicate that this mode is improved obviously and is more precise than the previous numerical model which ignored the two-order unknown terms of wave surface location and velocity potential function in comparison with the theoretical values.展开更多
The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some smal...The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.展开更多
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
基金supported by the National Natural Science Foundation of China(1117113611261032)+2 种基金the Distinguished Young Scholars Fund of Lan Zhou University of Technology(Q201015)the basic scientific research business expenses of Gansu province collegethe Natural Science Foundation of Gansu province(1310RJYA021)
文摘In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.
文摘Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.
文摘The high-order boundary conditions for the problems cf Laplace equation in infinite region have been developed. The improvement in accuracy for numerical solution is achieved by imposing the high-order boundary conditions on the exterior boundarv of a reduced finite region in which the numerical method is used. So both the computing efforts and the required storage in computer are reduced. The numerical examples show that the 1st-order boundary condition approaches to the exact boundary condition and it is clearly superior to the traditional boundary condition and the 2nd-order boundary condition.
基金Supported by the Nationa1 Natural Science Foundation of China under Grant No.10874018"the Fundamental Research Funds for the Central Universities"
文摘The solutions of the Laplace equation in n-dimensional space are studied. The angular eigenfunctions have the form of associated Jacob/polynomials. The radial solution of the Helmholtz equation is derived.
基金Supported by Beijing Natural Science Foundation (No.1092003) Beijing Educational Committee Foundation (No.00600054R1002)
文摘We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 〈 z 〈 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.
文摘In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full polynomial space P_(k)is to use a much smaller number of basis functions to achieve the same accuracy when k≥2.The optimal rate of convergence is derived in both H^(1)and L^(2)norms.Numerical experiments have been conducted to verify the theoretical error estimates.In addition,numerical comparisons of using the P_(2)-harmonic polynomial space and using the standard P_(2)polynomial space are presented.
文摘Laplace's tidal equations are of great importance in various fields of geophysics. Here, the special case of zonal symmetry (zonal wavenumber m = 0) is investigated, where degenerate sets of eigensolutions appear. New results are presented for the inclusion of dissipative processes and the case of unstable conditions. In both instances the (nonzero) eigenfrequencies are complex. In the latter case, additional stable (i.e. real) eigenfrequencies appear in the numerical results for the absolute value of the Lambparameter ε being larger than a critical value εc. Further, it is shown that any degeneracies are removed through the inclusion of dissipation. Moreover, asymptotic relations are derived employing the relation of Laplace's tidal equations for m = 0 to the spheroidal differential equation. The implications of these findings to numerical techniques are demonstrated and results of computations are presented.
基金supported by the NSFC(11201486,11326153)supported by"the Fundamental Research Funds for the Central Universities(31541411213)"
文摘In this paper, we establish the partial Schauder estimates for the Kohn Laplace equation in the Heisenberg group based on the mean value theorem, the Taylor formula and a priori estimates for the derivatives of the Newton potential.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金financially supported by the SinoProbe-09-01(201011078)
文摘In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.
基金National Natural Science Foundation of China(No.49876026)
文摘For higher accuracy in simulating the transformation of three dimensional waves, in consideration of the advantages of constant panels and linear elements, a combined boundary elements is applied in this research. The method can be used to remove the transverse vibration due to the accumulation of computational errors. A combined boundary condition of sponge layer and Sommerfeld radiation condition is used to remove the reflected waves from the computing domain. By following the water particle on the water surface, the third order Stokes wave transform is simulated by the numerical wave flume technique. The computed results are in good agreement with theoretical ones.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278).
文摘We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.
文摘The numerical mode of nonlinear wave transformation based on both the Laplace equation for water field and the Bernoulli equation for water surface is a kind of time-domain boundary problem with initial conditions. And the basis for establishing the numerical mode of nonlinear wave in time domain is to trace the position of wave free surface and to calculate the instantaneous surface height and surface potential function. This paper firstly utilizes the ‘0-1' combined BEM to separate the boundary by means of discretization of Green's integral equation based on the Laplace equation, then separates the free surface of wave with FEM and derives the FEM equation of wave surface that satisfies the nonlinear boundary conditions. By jointly solving the above BEM and FEM equations, the wave potential and surface height could be obtained with iteration in time domain. Thus a new kind of nonlinear numerical mode is established for calculating wave transformation. The wave test in the numerical wave tank shows that the numerical simulation with this mode is of high accuracy.
文摘Compliant offshore structures such as spars,tension leg platforms(TLPs) and semi-submersibles have been dramatically improved in recent years due to their capability for deep water operation. Waves are the most important environmental phenomenon affecting these offshore structures. Estimation of wave forces is vital in offshore structure design. For large compliant offshore platforms,Morrison's equation is not valid anymore and usually diffraction theory is used. In this research,by using the finite difference method,a detailed analysis of the first-order diffraction of monochromatic waves on a large cylinder as a structural element is performed to solve the radiation and diffraction potentials. The results showed that the developed model is a reliable tool to estimate the wave forces and hydrodynamic coefficients on large structure elements when wave diffraction and radiation are considered.
基金a NASI Senior Scientist Fellowship to BNM and a DST Research Project no. SR/S4/MS:521/08
文摘Various water wave problems involving an infinitely long horizontal cylinder floating on the surface water were investigated in the literature of linearized theory of water waves employing a general multipole expansion for the wave potential. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace's equation (for non-oblique waves in two dimensions) or two-dimensional Helmholz equation (for oblique waves) satisfying the free surface condition and decaying rapidly away from the point of singularity. The method of constructing these wave-free potentials is presented here in a systematic manner for a number of situations such as deep water with a free surface, neglecting or taking into account the effect of surface tension, or with an ice-cover modelled as a thin elastic plate floating on water.
文摘There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.
基金supported by the National Natural Science Foundation of China (Grant No. 50921001)
文摘SUN Da-peng BAO Wei-bin, WU Hao and LI Yu-cheng ( In this paper the 0-1 combined BEM is adopted to subdivide the computational domain boundary, and to discretize the Green's integral expression based on Laplace equation. The FEM is used to subdivide the wave surface and deduce the surface equation which satisfies the nonlinear boundary conditions on the surface. The equations with potential function and wave surface height as an unknown quantity by application of Taylor expansion approach can be solved by iteration within the time step. In m-time iteration within the computational process of time step (n-1)At to nat, the results of the previous iteration are taken as the initial value of the two-order unknown terms in the present iteration. Thus, an improved tracking mode of nonlinear wave surface is estabIished, and numerical results of wave tank test indicate that this mode is improved obviously and is more precise than the previous numerical model which ignored the two-order unknown terms of wave surface location and velocity potential function in comparison with the theoretical values.
文摘The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.