The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion pr...The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.展开更多
The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equation...The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equations.Our purpose in this study is to introduce the notion of fuzzy double Laplace transform,fuzzy conformable double Laplace transform(FCDLT).We discuss some basic properties of FCDLT.We obtain the solutions of fuzzy partial differential equations(both one-dimensional and two-dimensional cases)through the double Laplace approach.We demonstrate through numerical examples that our proposed method is very successful and convenient for resolving partial differential equations.展开更多
The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involut...The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.展开更多
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol...Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.展开更多
This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run...This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run effect on the foreigll borrowing, domestic capital accumulation and the foreign direct investment in the home country, but increases the steady-state consumption level the same amount. However, the short-run analysis presents that increasing foreign aid does not affect the initial consumptioll level and the initial consumption increase rate; but it affects the initial savings positively.展开更多
In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-differential equations. The results show that the method is very simple and effective.
In this article, authors study the growth of Laplace-Stieltjes transform with zero order convergent in the right half-plane, define the exponential order and the exponential low order, and find the relations between t...In this article, authors study the growth of Laplace-Stieltjes transform with zero order convergent in the right half-plane, define the exponential order and the exponential low order, and find the relations between them. Some results similar to Dirichlet series are obtained.展开更多
The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff...The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.展开更多
In the present paper,we have considered the approximation of analytic functions represented by Laplace-Stieltjes transformations using sequence of definite integrals. We have characterized their order and type in term...In the present paper,we have considered the approximation of analytic functions represented by Laplace-Stieltjes transformations using sequence of definite integrals. We have characterized their order and type in terms of the rate of decrease of E;(F,β) where E;(F,β) is the error in approximating of the function F(s) by definite integral polynomials in the half plane Res≤β<α.展开更多
This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical sol...This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.展开更多
Delta function is an important function in mathematics and physics. In this paper, the Laplace transforms of δ(t)and δ(t-τ)have been discussed in detail. After the Laplace transform of δ(t)is analyzed, the author ...Delta function is an important function in mathematics and physics. In this paper, the Laplace transforms of δ(t)and δ(t-τ)have been discussed in detail. After the Laplace transform of δ(t)is analyzed, the author has found that three aspects should be taken into account, i.e. τ→0+, τ→0- andτ=0; and it is the same with the Laplace transform of δ(t-τ). Then the results of the Laplace transform of Delta function have been obtained in a rigorous and comprehensive sense.展开更多
The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several ...The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.展开更多
This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main clas...This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main classes of numerical methods used to invert the Laplace transform. Because the numerical inversion of the Laplace transform is a perturbed problem, rounding errors which are generated in numerical approximations can adversely affect the accurate reconstruction of the inverse transform. This paper demonstrates that working in a multi-precision environment can substantially reduce these errors and the resulting perturbations exist in transforming the data from the s-space into the time domain and in so doing overcome the main drawback of numerically inverting the Laplace transform. Our main finding is that both the Talbot and the accelerated Gaver functionals perform considerably better in a multi-precision environment increasing the advantages of using Laplace transform methods over time-stepping procedures in solving diffusion and more generally parabolic partial differential equations.展开更多
Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. A...Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.展开更多
基金Supported by the National Natural Science Foundation of China(12271062,11731012)by the Hunan Provincial National Natural Science Foundation of China(2019JJ50405)。
文摘The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.
基金Manar A.Alqudah would like to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R14),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equations.Our purpose in this study is to introduce the notion of fuzzy double Laplace transform,fuzzy conformable double Laplace transform(FCDLT).We discuss some basic properties of FCDLT.We obtain the solutions of fuzzy partial differential equations(both one-dimensional and two-dimensional cases)through the double Laplace approach.We demonstrate through numerical examples that our proposed method is very successful and convenient for resolving partial differential equations.
基金supported by NSFC(12071422)Zhejiang Province Science Foundation of China(LY14A010018)。
文摘The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.
文摘Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.
文摘This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run effect on the foreigll borrowing, domestic capital accumulation and the foreign direct investment in the home country, but increases the steady-state consumption level the same amount. However, the short-run analysis presents that increasing foreign aid does not affect the initial consumptioll level and the initial consumption increase rate; but it affects the initial savings positively.
文摘In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-differential equations. The results show that the method is very simple and effective.
文摘In this article, authors study the growth of Laplace-Stieltjes transform with zero order convergent in the right half-plane, define the exponential order and the exponential low order, and find the relations between them. Some results similar to Dirichlet series are obtained.
基金supported by the National Natural Science Foundation of China
文摘The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.
文摘In the present paper,we have considered the approximation of analytic functions represented by Laplace-Stieltjes transformations using sequence of definite integrals. We have characterized their order and type in terms of the rate of decrease of E;(F,β) where E;(F,β) is the error in approximating of the function F(s) by definite integral polynomials in the half plane Res≤β<α.
基金the Jiangxi Provincial Natural Scientific Foundation(0211014)Scientific Research Program from Education Office of Jiangxi Province([2005]213)East China Institute of Technology.
文摘This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.
基金Funded by by Natural Science Foundation Project of CQ CSTC (Grant No: cstc2012jjA50018)the Basic Research of Chongqing Municipal Education Commission (Grant No:KJ120613)
文摘Delta function is an important function in mathematics and physics. In this paper, the Laplace transforms of δ(t)and δ(t-τ)have been discussed in detail. After the Laplace transform of δ(t)is analyzed, the author has found that three aspects should be taken into account, i.e. τ→0+, τ→0- andτ=0; and it is the same with the Laplace transform of δ(t-τ). Then the results of the Laplace transform of Delta function have been obtained in a rigorous and comprehensive sense.
文摘The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.
文摘This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main classes of numerical methods used to invert the Laplace transform. Because the numerical inversion of the Laplace transform is a perturbed problem, rounding errors which are generated in numerical approximations can adversely affect the accurate reconstruction of the inverse transform. This paper demonstrates that working in a multi-precision environment can substantially reduce these errors and the resulting perturbations exist in transforming the data from the s-space into the time domain and in so doing overcome the main drawback of numerically inverting the Laplace transform. Our main finding is that both the Talbot and the accelerated Gaver functionals perform considerably better in a multi-precision environment increasing the advantages of using Laplace transform methods over time-stepping procedures in solving diffusion and more generally parabolic partial differential equations.
文摘Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.