We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central osc...We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.展开更多
The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several ...The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.展开更多
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi...This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.展开更多
Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of...Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of the inverse image function. The difference quotient and de Boor algorithm are used to derive the image function of the Lapl ace′s integral under non-uniform partition. And a set of practical formula is got when the partition is quasi-uniform. The scheme enables the image function to be approximated within any prescribed tolerance. Experiments also show that g ood result is achieved. It is much faster than that of Simpsons rule, and much s impler than that of Berge method, the traditional efficient method. It is no lon ger to find the zero points and coefficients of Gauss-Laguerre or Gauss-Legend re polynomials. The image function of Laplace′s integral can also be computed while the inverse image function is hyper-function with high order discontinuity.展开更多
Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway t...Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway to find accurate and efficient solution methods for integral equations. Some of noteworthy methods include Adomian Decomposition Method (ADM), Variational Iteration Method (VIM), Method of Successive Approximation (MSA), Galerkin method, Laplace transform method, etc. This research is focused on demonstrating Elzaki transform application for solution of linear Volterra integral equations which include convolution type equations as well as one system of equations. The selected problems are available in literature and have been solved using various analytical, semi-analytical and numerical techniques. Results obtained after application of Elzaki transform have been compared with solutions obtained through other prominent semi-analytic methods i.e. ADM and MSA (limited to first four iterations). The results substantiate that Elzaki transform method is not only a compatible alternate approach to other analytic methods like Laplace transform method but also simple in application once compared with methods ADM and MSA.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a...Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.展开更多
In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integr...In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.展开更多
In this paper, the exponential decreasing kernel is used in Laplace integral transform to transform a function from a certain domain to another domain. It is shown, in a rigorous way, that the Laplace transform of the...In this paper, the exponential decreasing kernel is used in Laplace integral transform to transform a function from a certain domain to another domain. It is shown, in a rigorous way, that the Laplace transform of the delta function is exactly one half rather than one, as it is believed. In addition, when this kernel is used in integral transform of attractive and repulsive Coulomb potential, it yields a finite definite value at the point of singularity.展开更多
In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution o...In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.展开更多
Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. A...Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.展开更多
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol...Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.展开更多
In this paper a class of risk processes in which claims occur as a renewal process is studied. A clear expression for Laplace transform of the survival probability is well given when the claim amount distribution is E...In this paper a class of risk processes in which claims occur as a renewal process is studied. A clear expression for Laplace transform of the survival probability is well given when the claim amount distribution is Erlang distribution or mixed Erlang distribution. The expressions for moments of the time to ruin with the model above are given.展开更多
We discuss the solution of Laplace’s differential equation and a fractional differential equation of that type, by using analytic continuations of Riemann-Liouville fractional derivative and of Laplace transform. We ...We discuss the solution of Laplace’s differential equation and a fractional differential equation of that type, by using analytic continuations of Riemann-Liouville fractional derivative and of Laplace transform. We show that the solutions, which are obtained by using operational calculus in the framework of distribution theory in our preceding papers, are obtained also by the present method.展开更多
The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus...The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.展开更多
In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hy...In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.展开更多
Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams...Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.展开更多
In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting...In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting the limits of integration,the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique.The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process.In the numerical examples,the bi-Helmholtz kernel-based Strain D(or Stress D)two-phase model shows consistently softening(or stiffening)effects on both the tension and the free vibration of nanorods with different boundary edges.The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.展开更多
文摘We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.
文摘The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.
文摘This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.
文摘Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of the inverse image function. The difference quotient and de Boor algorithm are used to derive the image function of the Lapl ace′s integral under non-uniform partition. And a set of practical formula is got when the partition is quasi-uniform. The scheme enables the image function to be approximated within any prescribed tolerance. Experiments also show that g ood result is achieved. It is much faster than that of Simpsons rule, and much s impler than that of Berge method, the traditional efficient method. It is no lon ger to find the zero points and coefficients of Gauss-Laguerre or Gauss-Legend re polynomials. The image function of Laplace′s integral can also be computed while the inverse image function is hyper-function with high order discontinuity.
文摘Volterra type integral equations have diverse applications in scientific and other fields. Modelling physical phenomena by employing integral equations is not a new concept. Similarly, extensive research is underway to find accurate and efficient solution methods for integral equations. Some of noteworthy methods include Adomian Decomposition Method (ADM), Variational Iteration Method (VIM), Method of Successive Approximation (MSA), Galerkin method, Laplace transform method, etc. This research is focused on demonstrating Elzaki transform application for solution of linear Volterra integral equations which include convolution type equations as well as one system of equations. The selected problems are available in literature and have been solved using various analytical, semi-analytical and numerical techniques. Results obtained after application of Elzaki transform have been compared with solutions obtained through other prominent semi-analytic methods i.e. ADM and MSA (limited to first four iterations). The results substantiate that Elzaki transform method is not only a compatible alternate approach to other analytic methods like Laplace transform method but also simple in application once compared with methods ADM and MSA.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.
文摘In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.
文摘In this paper, the exponential decreasing kernel is used in Laplace integral transform to transform a function from a certain domain to another domain. It is shown, in a rigorous way, that the Laplace transform of the delta function is exactly one half rather than one, as it is believed. In addition, when this kernel is used in integral transform of attractive and repulsive Coulomb potential, it yields a finite definite value at the point of singularity.
文摘In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.
文摘Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered.
文摘Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.
基金Supported by the NNSF of China(10471076)the NSF of Shandong Province(Y2004A06)the Key Project of the Ministry of Education of China(206091).
文摘In this paper a class of risk processes in which claims occur as a renewal process is studied. A clear expression for Laplace transform of the survival probability is well given when the claim amount distribution is Erlang distribution or mixed Erlang distribution. The expressions for moments of the time to ruin with the model above are given.
文摘We discuss the solution of Laplace’s differential equation and a fractional differential equation of that type, by using analytic continuations of Riemann-Liouville fractional derivative and of Laplace transform. We show that the solutions, which are obtained by using operational calculus in the framework of distribution theory in our preceding papers, are obtained also by the present method.
文摘The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.
文摘In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures of China(No.MCMS-0217G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.11672131)。
文摘Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)。
文摘In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting the limits of integration,the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique.The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process.In the numerical examples,the bi-Helmholtz kernel-based Strain D(or Stress D)two-phase model shows consistently softening(or stiffening)effects on both the tension and the free vibration of nanorods with different boundary edges.The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.