In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercial...In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercially available laponite was characterized by X-ray di ractometry, scanning electron microscopy and infrared spectrometry. Its dispersibility, salt resistance and high-temperature resistance were evaluated. The results showed that laponite possessed superior cation exchange capacity(140.4 mmol/100 g) with interlayer cations of Na^+ and Li^+. Laponite could easily be dispersed in water to yield increased viscosity with no influence from hydration time or temperature. On the other hand, laponite dispersions displayed an excellent heat resistance, with invariant apparent viscosity at high temperatures. For instance, the apparent viscosity of the2 wt% laponite dispersion underwent changes between 22 and 24 mPa s after hot rolling at 180–240 °C for 16 h. Compared to existing mud-making materials, laponite exhibited better mud-making properties. Furthermore, laponite revealed good compatibility with other additives, and the water-based drilling fluids prepared with laponite as mud-making material showed an excellent stability at elevated temperatures and superior performance–cost ratios. Overall, these findings indicated that laponite had an excellent dispersibility at high temperatures and hence would have promising applications as high-temperature mud-making material for preparing water-based drilling fluids designed for ultra-high-temperature environments.展开更多
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin...Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.展开更多
High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper ...High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition,plugging and lubrication performances.Shale inhibition performance was studied by linear swelling test and shale recovery test.Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope(SEM)observation.Extreme pressure lubricity test was used to evaluate the lubrication property.Experimental results show that laponite has good shale inhibition property,which is better than commonly used shale inhibitors,such as polyamine and KCl.Laponite can effectively plug shale pores.It considerably decreases the surface area and pore volume of shale,and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm.Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string.Besides,laponite can reduce the fluid loss volume.According to mechanism analysis,the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.展开更多
Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. Th...Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.展开更多
The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the phot...The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.展开更多
Exfoliated polystyrene (PS)/laponite nanocomposites were prepared successfully. The characteristic d001 diffraction peak of organo-laponite disappeared in the XRD patterns of nanocomposites, indicating that the laponi...Exfoliated polystyrene (PS)/laponite nanocomposites were prepared successfully. The characteristic d001 diffraction peak of organo-laponite disappeared in the XRD patterns of nanocomposites, indicating that the laponite layers were exfoliated and the ordered crystal structure of laponite was destroyed because of the styrene polymerization. TEM observations showed that the exfoliated laponite primary particles were dispersed randomly in the PS matrix with lateral dimensions from 1 nm to 10 nm. SEM results showed that the PS/laponite nanocomposite particles were almost monodispersed spheres with the size of about 120 nm. Because of the interaction between PS and laponite nanolayers, the nanocomposites exhibited higher thermal stability and glass transition temperature when compared to pure PS.展开更多
The chemical composition, morphology of the particles of positively charged layered doubl?hydroxides (LDHs) were studied by ICP, Mastersizer, TEM. The preliminary results indicated that with adding LDHs to 1% laponite...The chemical composition, morphology of the particles of positively charged layered doubl?hydroxides (LDHs) were studied by ICP, Mastersizer, TEM. The preliminary results indicated that with adding LDHs to 1% laponite dispersion the yield stress of laponite/LDHs mixed dispersions increased at first, then decreased dramatically to a minimum, and the yield stress rose again when LDHs increased further.展开更多
The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring...The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring agent, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brumauer-Emmett-Teller (BET) surface area. The photocatalytic activities of Ce-Ti-lap were investigated by the degradation of methyl orange (MO). The results showed that Ce and Ti could be introduced to...展开更多
Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work.The multilayer hydrophilic core/hydroph...Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work.The multilayer hydrophilic core/hydrophobic shell polymer latex particles containing carboxyl groups inside were first synthesized via seeded emulsion polymerization,followed by alkali treatment,generating polymeric hollow microspheres.Then,polyethyleneimine(PEI) and Laponite were alternately electrostatic adsorbed on the prepared polymeric hollow microspheres to form polymeric-Laponite composite hollow microspheres.It was indicated that the morphology of alkali-treated microspheres could be tuned through simply altering the dosage of alkali used in the post-treatment process.Along with the increasing of the coating layers,the zeta potential of microspheres absorbed PEI or Laponite approximately tended to be constant respectively,and the thickness of Laponite layer around the hollow microspheres increased clearly,getting more uniform and homogenous.Furthermore,the corresponding polymeric-Laponite hollow microspheres showed high pressure resistance ability compared to the polymeric hollow microspheres.展开更多
基金financially supported by the NSF of China(No.41502345)
文摘In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercially available laponite was characterized by X-ray di ractometry, scanning electron microscopy and infrared spectrometry. Its dispersibility, salt resistance and high-temperature resistance were evaluated. The results showed that laponite possessed superior cation exchange capacity(140.4 mmol/100 g) with interlayer cations of Na^+ and Li^+. Laponite could easily be dispersed in water to yield increased viscosity with no influence from hydration time or temperature. On the other hand, laponite dispersions displayed an excellent heat resistance, with invariant apparent viscosity at high temperatures. For instance, the apparent viscosity of the2 wt% laponite dispersion underwent changes between 22 and 24 mPa s after hot rolling at 180–240 °C for 16 h. Compared to existing mud-making materials, laponite exhibited better mud-making properties. Furthermore, laponite revealed good compatibility with other additives, and the water-based drilling fluids prepared with laponite as mud-making material showed an excellent stability at elevated temperatures and superior performance–cost ratios. Overall, these findings indicated that laponite had an excellent dispersibility at high temperatures and hence would have promising applications as high-temperature mud-making material for preparing water-based drilling fluids designed for ultra-high-temperature environments.
基金support from CNPC Chuanqing Drilling Engineering Company Limited,Chinathe“academic pass”of Southwest Petroleum Universitythe China Postdoctoral Science Foundation(2022M712644)
文摘Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.
基金The authors are thankful to the National Natural Science Foundation of China(U1762212,51904329,41902323)CNPC Science and Technology Project(No.2018A-3907)+4 种基金Shandong Natural Science Foundation(ZR2019BEE002)the Opening Fund of Key Laboratory of Unconventional Oil and Gas Development(China University of Petroleum(East China))Ministry of Education(19CX05005A-7)the Fundamental Research Funds for the Central Universities(No.18CX02171A)Scientific Research Foundation for the Introduction of Talents(YJ20170014)。
文摘High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition,plugging and lubrication performances.Shale inhibition performance was studied by linear swelling test and shale recovery test.Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope(SEM)observation.Extreme pressure lubricity test was used to evaluate the lubrication property.Experimental results show that laponite has good shale inhibition property,which is better than commonly used shale inhibitors,such as polyamine and KCl.Laponite can effectively plug shale pores.It considerably decreases the surface area and pore volume of shale,and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm.Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string.Besides,laponite can reduce the fluid loss volume.According to mechanism analysis,the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.
基金sponsored by the National Science Foundation(CMMI-1562907)the financial support from the National Natural Science Foundation of China(51678511 and 51308484)+4 种基金the Open Fund of Key Laboratory of Mineralogy and Metallogeny in Chinese Academy of Sciences(KLMM20150104)the Natural Science Foundation of Hunan Province(13JJ4049)the Education Department Fund of Hunan Province(14C1094)the Major Talent Training Program of Xiangtan University(16PYZ09)the Specialized Research Fund for the Doctoral Program of Xiangtan University(12QDZ18)
文摘Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.
基金Funded by China Postdoctoral Science Foundation (No.20090450868)
文摘The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.
文摘Exfoliated polystyrene (PS)/laponite nanocomposites were prepared successfully. The characteristic d001 diffraction peak of organo-laponite disappeared in the XRD patterns of nanocomposites, indicating that the laponite layers were exfoliated and the ordered crystal structure of laponite was destroyed because of the styrene polymerization. TEM observations showed that the exfoliated laponite primary particles were dispersed randomly in the PS matrix with lateral dimensions from 1 nm to 10 nm. SEM results showed that the PS/laponite nanocomposite particles were almost monodispersed spheres with the size of about 120 nm. Because of the interaction between PS and laponite nanolayers, the nanocomposites exhibited higher thermal stability and glass transition temperature when compared to pure PS.
基金Project supported by the Key Project of the Ministry of Education of China(No.02128)the National Natural Science Foundation of China(No.20043002).
文摘The chemical composition, morphology of the particles of positively charged layered doubl?hydroxides (LDHs) were studied by ICP, Mastersizer, TEM. The preliminary results indicated that with adding LDHs to 1% laponite dispersion the yield stress of laponite/LDHs mixed dispersions increased at first, then decreased dramatically to a minimum, and the yield stress rose again when LDHs increased further.
基金Project supported by China Postdoctoral Science Foundation (20090450868)
文摘The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring agent, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brumauer-Emmett-Teller (BET) surface area. The photocatalytic activities of Ce-Ti-lap were investigated by the degradation of methyl orange (MO). The results showed that Ce and Ti could be introduced to...
基金supported by Heilongjiang Provincial Natural Science Foundation for Youth, China (No. QC2014C052)Fund of Key Laboratory of Advanced materials of Ministry of Education (No. 2016AML06)the training project for innovation and entrepreneurship of the Harbin University of Science and Technology, China (2016)
文摘Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work.The multilayer hydrophilic core/hydrophobic shell polymer latex particles containing carboxyl groups inside were first synthesized via seeded emulsion polymerization,followed by alkali treatment,generating polymeric hollow microspheres.Then,polyethyleneimine(PEI) and Laponite were alternately electrostatic adsorbed on the prepared polymeric hollow microspheres to form polymeric-Laponite composite hollow microspheres.It was indicated that the morphology of alkali-treated microspheres could be tuned through simply altering the dosage of alkali used in the post-treatment process.Along with the increasing of the coating layers,the zeta potential of microspheres absorbed PEI or Laponite approximately tended to be constant respectively,and the thickness of Laponite layer around the hollow microspheres increased clearly,getting more uniform and homogenous.Furthermore,the corresponding polymeric-Laponite hollow microspheres showed high pressure resistance ability compared to the polymeric hollow microspheres.