The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources ...The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources in these terrains.In this research,Himalayan Gandak River basin is considered as the study area where TLAPS and PLAPS vary significantly due to high altitude of Himalayas.To assess the impact of TLAPS and PLAPS on water balance components,Soil Water Assessment Tool(SWAT)model was calibrated(2000-2007)and validated(2008-2014)on daily time step for three projects i.e.,Reference Project(RP),Snowmelt Project(SP)and distributed elevation band snowmelt project(SWAT-ETISM).The analysis discloses that SWAT-ETISM model(which has TLAPS and PLAPS parameters)outperforms the RP and the SP models in predicting streamflow with improved statistical indicators R2=0.88,NSE=0.84 and PBIAS=11.9.Furthermore,it was observed that SWAT-ETISM model comprehensively improved the streamflow statistics by improving the snow water equivalent and water balance components through the consideration of TLAPS and PLAPS values for the region.Hence,the proposed SWAT-ETISM model can be used for estimation of the water budget at the high-altitude and data scarce alpine Himalayan regions and worldwide,where PLAPS and TLAPS are substantial due to altitudinal variation.展开更多
To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were u...To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.展开更多
Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surfac...Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.展开更多
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison betw...In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.展开更多
An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- t...An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- tent with the precious such as using the operator method. Furthermore, the Jaynes-Cummings Hamiltonian including the anti-rotating term is also solved precisely using this accurate way so that results agree with experiments better. Essences of the anti-rotating term are revealed. We discuss the relations of the phenomenon of atomic collapse and revival with the average photons number, the light field phase angle, the resonant frequency, and the size of coupling constant. The discussions may make one select suitable conditions to carry out experiment well and study the virtual light field effect on cavity quantum electrodynamics.展开更多
The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse ...The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse rate in the Kunlun Mountain regions based on both long-term meteorological records(1961-2017)and field surveys measured data(2012-2017).The results showed that(1)The near-surface temperature lapse rates(β;)has spatiotemporal distribution patterns on the Northwestern Kunlun Mountains(NWKM),and in complex terrain areas the complexity of the temperature-elevation relationship cannot be explained by the constant environmental temperature lapse rate(0.65℃/100 m)throughout alone.(2)Theβ;for the daily mean,minimum,and maximum temperature on the north slopes in the Kunlun mountain area are 0.41,0.47,and 0.37℃/100 m and on the Tiznafu River(TR)basin are 0.51,0.47 and 0.53℃/100 m,respectively.(3)The variations ofβ;for daily maximum and minimum temperature of the two regions exhibit similar monthly characteristics,which are lower in the winter and spring months than in other months.A greatest variability ofβ;for the daily mean,minimum,and maximum temperature appears in winter and a light variability ofβ;occurs in spring.The seasonal variability ofβ;for daily maximum temperature is greater than that for daily minimum temperature,and the seasonal variability ofβ;for daily average temperature has the smallest variability.(4)There is no significant trend of change occurred in theβ;of NWKM.(5)The spatial and temporal variations ofβ;for the NWKM are linked to the geographic differences and climate factors.The results of Grey Relational Analysis showed that theβ;distribution is mainly influenced by the wind speed and relative humidity of the NWKM.展开更多
Understanding the spatial distribution of temperature, especially the relationship between temperature and altitude, is essential for understanding both climatological and hydrological processes and their variabilitie...Understanding the spatial distribution of temperature, especially the relationship between temperature and altitude, is essential for understanding both climatological and hydrological processes and their variabilities. This is because those processes are sensitive to air temperature, especially in sub humid tropical regions, where air temperature influences the movements of pollutants and controls exchanges of energy and water fluxes between land and atmosphere particularly within the lower troposphere. This study examined the trend of lower tropospheric lapse rate in the coastal area of Port Harcourt, Nigeria. Six years’ data (2010-2015) for temperature between 1000 mbar and 850 mbar pressure levels was retrieved from era-interim re-analysis platform for the analysis. The data was acquired at 6-hourly synoptic hours: 0000H, 0600H, 1200H and 1800H at 0.125° grid resolution. Findings from the computed environmental lapse rate (ELR) show that conditional instability with an annual lapse rate of 5.5°C/km persists at the area from January to December. It was revealed that the months of December and January constituted the highest ELR trends of 6.5°C/km and 5.9°C/km respectively. This indicates that the month of December assumes a normal tropospheric lapse rate trend. The average range of lapse rate trend in the area which is close to the moist adiabatic lapse rate (MALR) of 5.0°C/km than the dry adiabatic lapse rate (DALR) shows that the study atmospheric environment is rich in water vapour. The 6-hourly synoptic analysis of the ELR pattern shows that lapse rate range between 1°C/km - 6.4°C/km and 6.5°C/km - 10°C/km dominates throughout the year at 0000 - 0600 Hrs and 1200 - 1800 Hrs respectively. This demonstrates a higher and lower lapse rate trend during the day and night periods respectively. Relating study findings to the potential of air to disperse emissions in the area suggests that air emissions will be conveyed through far and near distances across the boundary layers due to the moderate dispersive potential of air regarding the closeness of the average ELR to the MALR. Policies that will ensure that pollutants are dispersed aloft especially emission stacks above 50 m is advocated in the city of Port Harcourt.展开更多
This study assessed the pattern of planetary layer lapse rate across the major climate belts of Nigeria.Six years’data(2010-2015)for air temperature values between 1000 mbar and 850 mbar atmospheric pressure levels w...This study assessed the pattern of planetary layer lapse rate across the major climate belts of Nigeria.Six years’data(2010-2015)for air temperature values between 1000 mbar and 850 mbar atmospheric pressure levels was acquired from Era-Interim Re-analysis data centre.The data was retrieved at 6-hourly synoptic hours:00:00 Hr,06:00 Hr.at 0.125o grid resolution.Results showed that the lower tropospheric layers throughout the various climate belts has a positive lapse rate.Findings also revealed that the average annual lapse rate condition were:Tropical wet zone(Port Harcourt)-5.6 oC/km;Bi-modal Tropical continental zone(Enugu)-5.8 oC/km;Montane zone(Jos)-6.5 oC/km;Mono-modal Tropical continental zone(Kano)-6.6 oC/km;and Hot semi-arid zone(Maiduguri)-6.6 oC/km.This average values presents the lapse rates to be near the Saturated Adiabatic Lapse Rate(SALR).Average diurnal results for the climate belts showed that lapse rate is higher during the afternoon and transition periods than the rest periods and increases from the coastal areas northward.The seasonal periods of highest lapse rates during the day time are from December-May(i.e.-5.8-9.5 oC/km)with slight decrease from June-November.The positive lapse rates of range-1.8 to 5.9 oC/km observed during the period of dawn across the entire region showed that infrared radiation was still being released and modified by less energetic mechanical turbulence that characterizes the surface layer across Nigeria.This also indicate that global warming is real and in substantial effect.The study findings imply that conditional instability prevailed over the entire region,therefore,the planetary layer environment will be of slow to moderate dispersive potential and will require forceful mechanism to lift emissions introduced into it.It is recommended that industrial stacks should be above 50 m to enhance the dispersion of emissions aloft.展开更多
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects...The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.展开更多
Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a succ...Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a successful transition.This is critical too,as patients lost to specialised care are more likely to experience mor-bidity and premature mortality.Aims:To understand the prevalence and reasons for loss to follow-up(LTF)at a large Australian Adult Congenital Heart Disease(ACHD)centre.Methods:Patients with moderate or highly complex CHD and gaps in care of>3 years(defined as LTF)were identified from a comprehensive ACHD data-base.Structured telephone interviews examined current care and barriers to clinic attendance.Results:Overall,407(22%)of ACHD patients(n=1842)were LTF.The mean age at LTF was 31(SD 11.5)years and 54%were male;311(76%)were uncontactable.Compared to adults seen regularly,lost patients were younger,with a greater socio-economic disadvantage,and had less complex CHD(p<0.05 for all).We interviewed 59 patients(14%).The top 3 responses for care absences were“feeling well”(61%),losing track of time(36%),and not needing fol-low-up care(25%).Conclusions:A large proportion of the ACHD population becomes lost to specialised cardiac care,even after a successful transition.This Australian study reports younger age,moderate complexity defects,and socio-economic disadvantage as predictive of loss to follow-up.This study highlights the need for novel approaches to patient-centered service delivery even beyond the age of transition and resources to maintain patient engagement within the ACHD service.展开更多
The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and...The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and γTa have different sensitivity to local surface energy balance and large-scale energy transport and therefore they may have diverse spatial and temporal variability,which has not been clearly illustrated in existing studies.In this study,we calculated and compared γTa and γTs at^2200 stations over China from 1961 to 2014.This study finds that γTa and γTs have a similar multiyear national average(0.53°C/100 m)and seasonal cycle.Nevertheless,γTs shows steeper multiyear average than γTa at high latitudes,and γTs in summer is steeper than γTa ,especially in Northwest China.The North China shows the shallowest γTa and γTs,then inhibiting the vertical diffusion of air pollutants and further reducing the lapse rates due to accumulation of pollutants.Moreover,the long-term trend signs for γTa and γTs are opposite in northern China.However,the trends in γTa and γTs are both negative in Southwest China and positive in Southeast China.Surface incident solar radiation,surface downward longwave radiation and precipitant frequency jointly can account for 80%and 75%of the long-term trends in γTa and γTs in China,respectively,which provides an explanation of trends of γTa and γTs from perspective of surface energy balance.展开更多
In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution...In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution. We investigate the dynamic properties of the solution around both disease-free and endemic equilibria points of the deterministic model depending on the basic reproduction number under some noise excitation. Furthermore, we present some numerical simulations to support the theoretical results.展开更多
Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual ...Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual change of the ALRT and effect of macrotopography on the ALRT, using temperature data from 671 national standard meteorological stations.展开更多
Early identification of pathogenic bacteria in food,water,and bodily fluids is very important and yet challenging,owing to sample complexities and large sample volumes that need to be rapidly screened.Existing screeni...Early identification of pathogenic bacteria in food,water,and bodily fluids is very important and yet challenging,owing to sample complexities and large sample volumes that need to be rapidly screened.Existing screening methods based on plate counting or molecular analysis present various tradeoffs with regard to the detection time,accuracy/sensitivity,cost,and sample preparation complexity.Here,we present a computational live bacteria detection system that periodically captures coherent microscopy images of bacterial growth inside a 60-mm-diameter agar plate and analyses these time-lapsed holograms using deep neural networks for the rapid detection of bacterial growth and the classification of the corresponding species.The performance of our system was demonstrated by the rapid detection of Escherichia coli and total coliform bacteria(i.e.,Klebsiella aerogenes and Klebsiella pneumoniae subsp.pneumoniae)in water samples,shortening the detection time by >12 h compared to the Environmental Protection Agency(EPA)-approved methods.Using the preincubation of samples in growth media,our system achieved a limit of detection(LOD)of ~1 colony forming unit(CFU)/L in≤9 h of total test time.This platform is highly cost-effective(~$0.6/test)and has high-throughput with a scanning speed of 24 cm2/min over the entire plate surface,making it highly suitable for integration with the existing methods currently used for bacteria detection on agar plates.Powered by deep learning,this automated and cost-effective live bacteria detection platform can be transformative for a wide range of applications in microbiology by significantly reducing the detection time and automating the identification of colonies without labelling or the need for an expert.展开更多
The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how ...The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.展开更多
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the...In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered struc- ture of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is pres- ented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.展开更多
The IndyCar series distinguishes itself by providing the same design and operation of the single-seater to its pilots.The difference in times is then attributable to the skills of the drivers,but considering the data ...The IndyCar series distinguishes itself by providing the same design and operation of the single-seater to its pilots.The difference in times is then attributable to the skills of the drivers,but considering the data from the races could test this assumption.The objective of this work was to establish a trajectory model to predict race times.A cross-sectional,correlational,and explanatory work was carried out with a sample of 18,474 records in the period from 2020 to 2023 of the IndyCar series.The results show that the time span predicts the time differences.In relation to the studies of acceptance of the technology,the adjustment of this to human capacities to explain the time differences in the series of racing cars is discussed.展开更多
Numerical solution of time-lapse seismic monitoring problems can be challenging due to the presence of finely layered reservoirs.Repetitive wave modeling using fine layered meshes also adds more computational cost.Con...Numerical solution of time-lapse seismic monitoring problems can be challenging due to the presence of finely layered reservoirs.Repetitive wave modeling using fine layered meshes also adds more computational cost.Conventional approaches such as finite difference and finite element methods may be prohibitively expensive if the whole domain is discretized with the cells corresponding to the grid in the reservoir subdomain.A common approach in this case is to use homogenization techniques to upscale properties of subsurface media and assign the background properties to coarser grid;however,inappropriate application of upscaling might result in a distortion of the model,which hinders accurate monitoring of the fluid change in subsurface.In this work,we instead investigate capabilities of a multiscale method that can deal with fine scale heterogeneities of the reservoir layer and more coarsely meshed rock properties in the surrounding domains in the same fashion.To address the 3-D wave problems,we also demonstrate how the multiscale wave modeling technique can detect the changes caused by fluid movement while the hydrocarbon production activity proceeds.展开更多
文摘The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources in these terrains.In this research,Himalayan Gandak River basin is considered as the study area where TLAPS and PLAPS vary significantly due to high altitude of Himalayas.To assess the impact of TLAPS and PLAPS on water balance components,Soil Water Assessment Tool(SWAT)model was calibrated(2000-2007)and validated(2008-2014)on daily time step for three projects i.e.,Reference Project(RP),Snowmelt Project(SP)and distributed elevation band snowmelt project(SWAT-ETISM).The analysis discloses that SWAT-ETISM model(which has TLAPS and PLAPS parameters)outperforms the RP and the SP models in predicting streamflow with improved statistical indicators R2=0.88,NSE=0.84 and PBIAS=11.9.Furthermore,it was observed that SWAT-ETISM model comprehensively improved the streamflow statistics by improving the snow water equivalent and water balance components through the consideration of TLAPS and PLAPS values for the region.Hence,the proposed SWAT-ETISM model can be used for estimation of the water budget at the high-altitude and data scarce alpine Himalayan regions and worldwide,where PLAPS and TLAPS are substantial due to altitudinal variation.
基金National Science and Technology Supporting Program(2012BAB13B01)National Key Scientific Instrument and Equipment Development Program(2012YQ030126)+2 种基金Coal United Project of National Natural Science Foundation(U1261203)China Geological Survey Project(1212011220798)National Science and Technology Major Project(2011ZX05035-004-001HZ).
文摘To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.
基金The National Natural Science Foundation of China under contract No. 41675070the Shanghai Eastern Scholar Program under contract No. TP2015049+1 种基金the Expert Development Fund under contract No. 2017033the China Scholarship Council under contract No. 201506330007.
文摘Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.
基金Department of Science and Technology (DST), Government of India sponsored consortium project titled "Himalayan Cryosphere: Science and Society" and the financial assistance received from the Department under the project
文摘In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.09JJ6011the Natural Science Foundation of Education Department of Hunan Province under Grant Nos.10A100 and 07C528
文摘An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- tent with the precious such as using the operator method. Furthermore, the Jaynes-Cummings Hamiltonian including the anti-rotating term is also solved precisely using this accurate way so that results agree with experiments better. Essences of the anti-rotating term are revealed. We discuss the relations of the phenomenon of atomic collapse and revival with the average photons number, the light field phase angle, the resonant frequency, and the size of coupling constant. The discussions may make one select suitable conditions to carry out experiment well and study the virtual light field effect on cavity quantum electrodynamics.
基金supported by the National Natural Science Foundation of China(Grant No.41901022,41807445 and 41975010)the National Key Research and Development Program of China(Grant No.2021YFE0100700)。
文摘The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse rate in the Kunlun Mountain regions based on both long-term meteorological records(1961-2017)and field surveys measured data(2012-2017).The results showed that(1)The near-surface temperature lapse rates(β;)has spatiotemporal distribution patterns on the Northwestern Kunlun Mountains(NWKM),and in complex terrain areas the complexity of the temperature-elevation relationship cannot be explained by the constant environmental temperature lapse rate(0.65℃/100 m)throughout alone.(2)Theβ;for the daily mean,minimum,and maximum temperature on the north slopes in the Kunlun mountain area are 0.41,0.47,and 0.37℃/100 m and on the Tiznafu River(TR)basin are 0.51,0.47 and 0.53℃/100 m,respectively.(3)The variations ofβ;for daily maximum and minimum temperature of the two regions exhibit similar monthly characteristics,which are lower in the winter and spring months than in other months.A greatest variability ofβ;for the daily mean,minimum,and maximum temperature appears in winter and a light variability ofβ;occurs in spring.The seasonal variability ofβ;for daily maximum temperature is greater than that for daily minimum temperature,and the seasonal variability ofβ;for daily average temperature has the smallest variability.(4)There is no significant trend of change occurred in theβ;of NWKM.(5)The spatial and temporal variations ofβ;for the NWKM are linked to the geographic differences and climate factors.The results of Grey Relational Analysis showed that theβ;distribution is mainly influenced by the wind speed and relative humidity of the NWKM.
文摘Understanding the spatial distribution of temperature, especially the relationship between temperature and altitude, is essential for understanding both climatological and hydrological processes and their variabilities. This is because those processes are sensitive to air temperature, especially in sub humid tropical regions, where air temperature influences the movements of pollutants and controls exchanges of energy and water fluxes between land and atmosphere particularly within the lower troposphere. This study examined the trend of lower tropospheric lapse rate in the coastal area of Port Harcourt, Nigeria. Six years’ data (2010-2015) for temperature between 1000 mbar and 850 mbar pressure levels was retrieved from era-interim re-analysis platform for the analysis. The data was acquired at 6-hourly synoptic hours: 0000H, 0600H, 1200H and 1800H at 0.125° grid resolution. Findings from the computed environmental lapse rate (ELR) show that conditional instability with an annual lapse rate of 5.5°C/km persists at the area from January to December. It was revealed that the months of December and January constituted the highest ELR trends of 6.5°C/km and 5.9°C/km respectively. This indicates that the month of December assumes a normal tropospheric lapse rate trend. The average range of lapse rate trend in the area which is close to the moist adiabatic lapse rate (MALR) of 5.0°C/km than the dry adiabatic lapse rate (DALR) shows that the study atmospheric environment is rich in water vapour. The 6-hourly synoptic analysis of the ELR pattern shows that lapse rate range between 1°C/km - 6.4°C/km and 6.5°C/km - 10°C/km dominates throughout the year at 0000 - 0600 Hrs and 1200 - 1800 Hrs respectively. This demonstrates a higher and lower lapse rate trend during the day and night periods respectively. Relating study findings to the potential of air to disperse emissions in the area suggests that air emissions will be conveyed through far and near distances across the boundary layers due to the moderate dispersive potential of air regarding the closeness of the average ELR to the MALR. Policies that will ensure that pollutants are dispersed aloft especially emission stacks above 50 m is advocated in the city of Port Harcourt.
文摘This study assessed the pattern of planetary layer lapse rate across the major climate belts of Nigeria.Six years’data(2010-2015)for air temperature values between 1000 mbar and 850 mbar atmospheric pressure levels was acquired from Era-Interim Re-analysis data centre.The data was retrieved at 6-hourly synoptic hours:00:00 Hr,06:00 Hr.at 0.125o grid resolution.Results showed that the lower tropospheric layers throughout the various climate belts has a positive lapse rate.Findings also revealed that the average annual lapse rate condition were:Tropical wet zone(Port Harcourt)-5.6 oC/km;Bi-modal Tropical continental zone(Enugu)-5.8 oC/km;Montane zone(Jos)-6.5 oC/km;Mono-modal Tropical continental zone(Kano)-6.6 oC/km;and Hot semi-arid zone(Maiduguri)-6.6 oC/km.This average values presents the lapse rates to be near the Saturated Adiabatic Lapse Rate(SALR).Average diurnal results for the climate belts showed that lapse rate is higher during the afternoon and transition periods than the rest periods and increases from the coastal areas northward.The seasonal periods of highest lapse rates during the day time are from December-May(i.e.-5.8-9.5 oC/km)with slight decrease from June-November.The positive lapse rates of range-1.8 to 5.9 oC/km observed during the period of dawn across the entire region showed that infrared radiation was still being released and modified by less energetic mechanical turbulence that characterizes the surface layer across Nigeria.This also indicate that global warming is real and in substantial effect.The study findings imply that conditional instability prevailed over the entire region,therefore,the planetary layer environment will be of slow to moderate dispersive potential and will require forceful mechanism to lift emissions introduced into it.It is recommended that industrial stacks should be above 50 m to enhance the dispersion of emissions aloft.
文摘The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.
文摘Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a successful transition.This is critical too,as patients lost to specialised care are more likely to experience mor-bidity and premature mortality.Aims:To understand the prevalence and reasons for loss to follow-up(LTF)at a large Australian Adult Congenital Heart Disease(ACHD)centre.Methods:Patients with moderate or highly complex CHD and gaps in care of>3 years(defined as LTF)were identified from a comprehensive ACHD data-base.Structured telephone interviews examined current care and barriers to clinic attendance.Results:Overall,407(22%)of ACHD patients(n=1842)were LTF.The mean age at LTF was 31(SD 11.5)years and 54%were male;311(76%)were uncontactable.Compared to adults seen regularly,lost patients were younger,with a greater socio-economic disadvantage,and had less complex CHD(p<0.05 for all).We interviewed 59 patients(14%).The top 3 responses for care absences were“feeling well”(61%),losing track of time(36%),and not needing fol-low-up care(25%).Conclusions:A large proportion of the ACHD population becomes lost to specialised cardiac care,even after a successful transition.This Australian study reports younger age,moderate complexity defects,and socio-economic disadvantage as predictive of loss to follow-up.This study highlights the need for novel approaches to patient-centered service delivery even beyond the age of transition and resources to maintain patient engagement within the ACHD service.
基金This work was supported by the National Key Research&Development Program of China(2017YFA0603601)the National Natural Science Foundation of China(41525018 and 41930970)。
文摘The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and γTa have different sensitivity to local surface energy balance and large-scale energy transport and therefore they may have diverse spatial and temporal variability,which has not been clearly illustrated in existing studies.In this study,we calculated and compared γTa and γTs at^2200 stations over China from 1961 to 2014.This study finds that γTa and γTs have a similar multiyear national average(0.53°C/100 m)and seasonal cycle.Nevertheless,γTs shows steeper multiyear average than γTa at high latitudes,and γTs in summer is steeper than γTa ,especially in Northwest China.The North China shows the shallowest γTa and γTs,then inhibiting the vertical diffusion of air pollutants and further reducing the lapse rates due to accumulation of pollutants.Moreover,the long-term trend signs for γTa and γTs are opposite in northern China.However,the trends in γTa and γTs are both negative in Southwest China and positive in Southeast China.Surface incident solar radiation,surface downward longwave radiation and precipitant frequency jointly can account for 80%and 75%of the long-term trends in γTa and γTs in China,respectively,which provides an explanation of trends of γTa and γTs from perspective of surface energy balance.
文摘In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution. We investigate the dynamic properties of the solution around both disease-free and endemic equilibria points of the deterministic model depending on the basic reproduction number under some noise excitation. Furthermore, we present some numerical simulations to support the theoretical results.
文摘Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual change of the ALRT and effect of macrotopography on the ALRT, using temperature data from 671 national standard meteorological stations.
基金the funding of ARO(Contract#W911NF-17-1-0161),Koc Group and HHMI.
文摘Early identification of pathogenic bacteria in food,water,and bodily fluids is very important and yet challenging,owing to sample complexities and large sample volumes that need to be rapidly screened.Existing screening methods based on plate counting or molecular analysis present various tradeoffs with regard to the detection time,accuracy/sensitivity,cost,and sample preparation complexity.Here,we present a computational live bacteria detection system that periodically captures coherent microscopy images of bacterial growth inside a 60-mm-diameter agar plate and analyses these time-lapsed holograms using deep neural networks for the rapid detection of bacterial growth and the classification of the corresponding species.The performance of our system was demonstrated by the rapid detection of Escherichia coli and total coliform bacteria(i.e.,Klebsiella aerogenes and Klebsiella pneumoniae subsp.pneumoniae)in water samples,shortening the detection time by >12 h compared to the Environmental Protection Agency(EPA)-approved methods.Using the preincubation of samples in growth media,our system achieved a limit of detection(LOD)of ~1 colony forming unit(CFU)/L in≤9 h of total test time.This platform is highly cost-effective(~$0.6/test)and has high-throughput with a scanning speed of 24 cm2/min over the entire plate surface,making it highly suitable for integration with the existing methods currently used for bacteria detection on agar plates.Powered by deep learning,this automated and cost-effective live bacteria detection platform can be transformative for a wide range of applications in microbiology by significantly reducing the detection time and automating the identification of colonies without labelling or the need for an expert.
基金The National Key R&D Program,No.2018YFA0605603National Natural Science Foundation of China,No.41575003。
文摘The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.
基金The research was supported by Bulgarian National Foundation"Science"USDA Forest Service,Rocky Mountain Forest and Range Experiment Station,Fort Collins,Colorado,USA.
文摘In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered struc- ture of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is pres- ented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.
文摘The IndyCar series distinguishes itself by providing the same design and operation of the single-seater to its pilots.The difference in times is then attributable to the skills of the drivers,but considering the data from the races could test this assumption.The objective of this work was to establish a trajectory model to predict race times.A cross-sectional,correlational,and explanatory work was carried out with a sample of 18,474 records in the period from 2020 to 2023 of the IndyCar series.The results show that the time span predicts the time differences.In relation to the studies of acceptance of the technology,the adjustment of this to human capacities to explain the time differences in the series of racing cars is discussed.
基金support of Mega-grant of the Russian Federation Government(N 14.Y26.31.0013)。
文摘Numerical solution of time-lapse seismic monitoring problems can be challenging due to the presence of finely layered reservoirs.Repetitive wave modeling using fine layered meshes also adds more computational cost.Conventional approaches such as finite difference and finite element methods may be prohibitively expensive if the whole domain is discretized with the cells corresponding to the grid in the reservoir subdomain.A common approach in this case is to use homogenization techniques to upscale properties of subsurface media and assign the background properties to coarser grid;however,inappropriate application of upscaling might result in a distortion of the model,which hinders accurate monitoring of the fluid change in subsurface.In this work,we instead investigate capabilities of a multiscale method that can deal with fine scale heterogeneities of the reservoir layer and more coarsely meshed rock properties in the surrounding domains in the same fashion.To address the 3-D wave problems,we also demonstrate how the multiscale wave modeling technique can detect the changes caused by fluid movement while the hydrocarbon production activity proceeds.