In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault ter...Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault terrace belt and its control on the formation of natural gas reservoirs.The research results show that the Baodao sag has the northern fault terrace belt,central depression belt and southern slope belt developed,among them,the northern fault terrace belt consists of multiple transition fault terrace belts such as Baodao B,A and C from west to east which control the source rocks,traps,reservoirs,oil and gas migration and hydrocarbon enrichment in the Baodao sag.The activity of the main fault of the transition belt in the sedimentary period of Yacheng Formation in the Early Oligocene controlled the hydrocarbon generation kitchen and hydrocarbon generation potential.From west to east,getting closer to the provenance,the transition belt increased in activity strength,thickness of source rock and scale of delta,and had multiple hydrocarbon generation depressions developed.The main fault had local compression under the background of tension and torsion,giving rise to composite traps under the background of large nose structure,and the Baodao A and Baodao C traps to the east are larger than Baodao B trap.Multiple fault terraces controlled the material source input from the uplift area to form large delta sand bodies,and the synthetic transition belt of the west and middle sections and the gentle slope of the east section of the F12 fault in the Baodao A transition belt controlled the input of two major material sources,giving rise to a number of delta lobes in the west and east branches.The large structural ridge formed under the control of the main fault close to the hydrocarbon generation center allows efficient migration and accumulation of oil and gas.The combination mode and active time of the main faults matched well with the natural gas charging period,resulting in the hydrocarbon gas enrichment.Baodao A transition belt is adjacent to Baodao 27,25 and 21 lows,where large braided river delta deposits supplied by Shenhu uplift provenance develop,and it is characterized by large structural ridges allowing high efficient hydrocarbon accumulation,parallel combination of main faults and early cessation of faulting activity,so it is a favorable area for hydrocarbon gas accumulation.Thick high-quality gas reservoirs have been revealed through drilling,leading to the discovery of the first large-scale gas field in Baodo 21-1 of Baodao sag.This discovery also confirms that the north transition zone of Songnan-Baodao sag has good reservoir forming conditions,and the transition fault terrace belt has great exploration potential eastward.展开更多
Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on...Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.展开更多
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面...针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。展开更多
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金Supported by the CNOOC Science and Technology Project(KJZH-2021-0003-00,CNOOC-KJ 135 ZDXM 38 ZJ 03 ZJ).
文摘Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault terrace belt and its control on the formation of natural gas reservoirs.The research results show that the Baodao sag has the northern fault terrace belt,central depression belt and southern slope belt developed,among them,the northern fault terrace belt consists of multiple transition fault terrace belts such as Baodao B,A and C from west to east which control the source rocks,traps,reservoirs,oil and gas migration and hydrocarbon enrichment in the Baodao sag.The activity of the main fault of the transition belt in the sedimentary period of Yacheng Formation in the Early Oligocene controlled the hydrocarbon generation kitchen and hydrocarbon generation potential.From west to east,getting closer to the provenance,the transition belt increased in activity strength,thickness of source rock and scale of delta,and had multiple hydrocarbon generation depressions developed.The main fault had local compression under the background of tension and torsion,giving rise to composite traps under the background of large nose structure,and the Baodao A and Baodao C traps to the east are larger than Baodao B trap.Multiple fault terraces controlled the material source input from the uplift area to form large delta sand bodies,and the synthetic transition belt of the west and middle sections and the gentle slope of the east section of the F12 fault in the Baodao A transition belt controlled the input of two major material sources,giving rise to a number of delta lobes in the west and east branches.The large structural ridge formed under the control of the main fault close to the hydrocarbon generation center allows efficient migration and accumulation of oil and gas.The combination mode and active time of the main faults matched well with the natural gas charging period,resulting in the hydrocarbon gas enrichment.Baodao A transition belt is adjacent to Baodao 27,25 and 21 lows,where large braided river delta deposits supplied by Shenhu uplift provenance develop,and it is characterized by large structural ridges allowing high efficient hydrocarbon accumulation,parallel combination of main faults and early cessation of faulting activity,so it is a favorable area for hydrocarbon gas accumulation.Thick high-quality gas reservoirs have been revealed through drilling,leading to the discovery of the first large-scale gas field in Baodo 21-1 of Baodao sag.This discovery also confirms that the north transition zone of Songnan-Baodao sag has good reservoir forming conditions,and the transition fault terrace belt has great exploration potential eastward.
基金Supported by the National Natural Science Foundation of China (No. 50178035)
文摘Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.
文摘针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。