This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest ...This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest existing hydropower project on the mainstream of the Upper Mekong River. Soil and meteorological data were collected from the Soil Spatial Database and the China Terrestrial Ecological Information Spatial Meteorology Database, while social and economic data were collected via field surveys. We have three major con- clusions: (1) Communities will be relocated to a new climate and new elevation, moving from a north tropical climate zone under 700 m to a subtropical climate zone above 700 m. (2) Physiographic element changes due to relocation will reduce household economic income. After relocation, the annual family income of the Shidaimao group decreased by 62%; the annual family income of the other 5 study groups (Lasa, Hani, Nochangchangyi, Mengsa, and Dawazi) dropped by 65%. (3) Communities relocated across the study township are 61.1% less connected with their former relatives after relocation while family-to-family free labor exchange, a previous community norm, decreased by 91%. China's dam resettlement compensation system focuses on the loss of economic resources after relocation. However, this study finds that the physiographic elements of the relocation sites are an important driver of ensuring economic growth and stability after relocation. As a result, we recommend more attention be paid to physiographic continuity when designing relocation models.展开更多
This paper gives an introduction to the large dam construction achievements seen in China over the past fifty years. Four developmental stages, dam height and darn type, newly adopted and developing dam types are elab...This paper gives an introduction to the large dam construction achievements seen in China over the past fifty years. Four developmental stages, dam height and darn type, newly adopted and developing dam types are elaborated in detail, with large dam statistics completed and under construction attached as well.展开更多
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountai...The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.展开更多
Water storage dams worldwide are ageing, and many will reach the end of their designed lifespan by the middle of the 21st century. Some of these dams will likely need to be removed. While dam construction impacts have...Water storage dams worldwide are ageing, and many will reach the end of their designed lifespan by the middle of the 21st century. Some of these dams will likely need to be removed. While dam construction impacts have been widely discussed, dam removal impacts on society and the economy need to be synthesized and considered in the ageing dams’ decision-making process. This paper summarizes dam removal impacts on the local economy and industry, culture, history and heritage, property value, recreation, aesthetics, and disaster avoidance from identified studies worldwide. It demonstrates that these impacts may vary depending on geography and between developed and developing countries. It concludes that dam removal should consider the co</span><span style="font-family:Verdana;">st, environmental, and the socio-economic impacts while including all</span><span style="font-family:Verdana;"> stakeholders who could be positively and negatively impacted by dam removal.展开更多
To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with...To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.展开更多
The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. Th...The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. This paper presents an investigation of the parameter variations of the identified model of the measured long-term static deformation for the structural health monitoring of Fui-Tsui Dam, which is located in a very active seismic zone of Taiwan. The measured static deformation is characterized as a function of the measured physical parameters, including the effects of hydrostatic pressure and temperature variation. The identified parameters, associated with the effects of hydrostatic pressure and temperature variation, change with environmental factors, such as flooding, earthquake and foundation change.展开更多
基金The Key Project of National Natural Science Foundation of China, No.U1202232 National Key Technologies R&D Program of China during the 12th Five-Year Plan Period, No.2013BAB06B03 Key Project of National Social Science Foundation of China, No. 11AZD04
文摘This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest existing hydropower project on the mainstream of the Upper Mekong River. Soil and meteorological data were collected from the Soil Spatial Database and the China Terrestrial Ecological Information Spatial Meteorology Database, while social and economic data were collected via field surveys. We have three major con- clusions: (1) Communities will be relocated to a new climate and new elevation, moving from a north tropical climate zone under 700 m to a subtropical climate zone above 700 m. (2) Physiographic element changes due to relocation will reduce household economic income. After relocation, the annual family income of the Shidaimao group decreased by 62%; the annual family income of the other 5 study groups (Lasa, Hani, Nochangchangyi, Mengsa, and Dawazi) dropped by 65%. (3) Communities relocated across the study township are 61.1% less connected with their former relatives after relocation while family-to-family free labor exchange, a previous community norm, decreased by 91%. China's dam resettlement compensation system focuses on the loss of economic resources after relocation. However, this study finds that the physiographic elements of the relocation sites are an important driver of ensuring economic growth and stability after relocation. As a result, we recommend more attention be paid to physiographic continuity when designing relocation models.
文摘This paper gives an introduction to the large dam construction achievements seen in China over the past fifty years. Four developmental stages, dam height and darn type, newly adopted and developing dam types are elaborated in detail, with large dam statistics completed and under construction attached as well.
基金supported by the National Basic Research and Development Program of China (Grant No. 973:2011CB409902)the Key Project of National Natural Science Foundation of China (Grant No. 41172321)Southwest Jiaotong University Doctor Innovation Fund
文摘The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.
文摘Water storage dams worldwide are ageing, and many will reach the end of their designed lifespan by the middle of the 21st century. Some of these dams will likely need to be removed. While dam construction impacts have been widely discussed, dam removal impacts on society and the economy need to be synthesized and considered in the ageing dams’ decision-making process. This paper summarizes dam removal impacts on the local economy and industry, culture, history and heritage, property value, recreation, aesthetics, and disaster avoidance from identified studies worldwide. It demonstrates that these impacts may vary depending on geography and between developed and developing countries. It concludes that dam removal should consider the co</span><span style="font-family:Verdana;">st, environmental, and the socio-economic impacts while including all</span><span style="font-family:Verdana;"> stakeholders who could be positively and negatively impacted by dam removal.
文摘To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.
文摘The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. This paper presents an investigation of the parameter variations of the identified model of the measured long-term static deformation for the structural health monitoring of Fui-Tsui Dam, which is located in a very active seismic zone of Taiwan. The measured static deformation is characterized as a function of the measured physical parameters, including the effects of hydrostatic pressure and temperature variation. The identified parameters, associated with the effects of hydrostatic pressure and temperature variation, change with environmental factors, such as flooding, earthquake and foundation change.