期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification 被引量:2
1
作者 Lei Luo Liangshun Luo +5 位作者 Yanqing Su Lin Su Liang Wang Ruirun Chen Jingjie Guo Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第20期1-14,共14页
Porosity is a major casting defect in alloys with large solidification intervals due to the disordered microstructure and broad mushy zones,which decreases badly the mechanical performance.Hence,finding ways to effect... Porosity is a major casting defect in alloys with large solidification intervals due to the disordered microstructure and broad mushy zones,which decreases badly the mechanical performance.Hence,finding ways to effectively reduce the porosity,further to optimize microstructure and mechanical performance is of great significance.In this regard,the Al-Cu-based alloys with large solidification intervals are continuously processed by coupling the travelling magnetic fields(TMF)with sequential solidification.Additionally,experiments combined with simulations are utilized to comprehensively analyze the mechanism of TMF on the reduction in porosity,including shrinkage porosity and gas porosity,from different perspectives.Current findings determine that downward TMF can effectually optimize together the porosity,microstructure and performance,by inducing the strong long-range directional melt flows,stabilizing the mushy zones,and optimizing the feeding channels and exhaust paths,as well as increasing the driving force of degassing process.Eventually,downward TMF can increase the ultimate tensile strength,yield strength,elongation and hardness from 175.2 MPa,87.5 MPa,13.3%and 80.2 kg mm^(-2) without TMF to 218.6 MPa,109.3 MPa,15.6%and 95.5 kg mm^(-2),while reduce the total porosity from0.95%to 0.18%.However,Up-TMF exerts negative effects on the optimization of porosity,microstructure and performance due to the opposite strong directional magnetic force and melt flows.Overall,our study provides an effective way to optimize together the porosity,microstructure and mechanical performance,and reveals their relationship,as well as details the relevant mechanisms of TMF on the porosity reduction from different perspectives. 展开更多
关键词 POROSITY large solidification intervals Travelling magnetic fields Sequential solidification Al-Cu-based alloys
原文传递
Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification 被引量:2
2
作者 Lei Luo Liangshun Luo +6 位作者 Robert O.Ritchie Yanqing Su Binbin Wang Liang Wang Ruirun Chen Jingjie Guo Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第2期100-113,共14页
Alloys with large solidification intervals are prone to issues from the disordered growth and defect formation;accordingly, finding ways to effectively optimize the microstructure, further to improve the mechanical pr... Alloys with large solidification intervals are prone to issues from the disordered growth and defect formation;accordingly, finding ways to effectively optimize the microstructure, further to improve the mechanical properties is of great importance. To this end, we couple travelling magnetic fields with sequential solidification to continuously regulate the mushy zones of Al-Cu-based alloys with large solidification intervals. Moreover, we combine experiments with simulations to comprehensively analyze the mechanisms on the optimization of microstructure and properties. Our results indicate that only downward travelling magnetic fields coupled with sequential solidification can obtain the refined and uniform microstructure, and promote the growth of matrix phase -Al along the direction of temperature gradient.Additionally, the secondary dendrites and precipitates are reduced, while the solute partition coefficient and solute solid-solubility are raised. Ultimately, downward travelling magnetic fields can increase the ultimate tensile strength, yield strength, elongation and hardness from 196.2 MPa, 101.2 MPa, 14.5 % and85.1 kg mm-2 without travelling magnetic fields to 224.1 MPa, 114.5 MPa, 17.1 % and 102.1 kg mm-2,and improve the ductility of alloys. However, upward travelling magnetic fields have the adverse effects on microstructural evolution, and lead to a reduction in the performance and ductility. Our findings demonstrate that long-range directional circular flows generated by travelling magnetic fields directionally alter the transformation and redistribution of solutes and temperature, which finally influences the solidification behavior and performance. Overall, our research present not only an innovative method to optimize the microstructures and mechanical properties for alloys with large solidification intervals,but also a detailed mechanism of travelling magnetic fields on this optimization during the sequential solidification. 展开更多
关键词 large solidification intervals Travelling magnetic fields Sequential solidification Mushy zones Al-Cu-based alloys
原文传递
L^(p)-Estimate for Linear Forward-Backward Stochastic Differential Equations
3
作者 Bing XIE Zhi Yong YU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第5期827-845,共19页
This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we o... This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we obtain an L^(P)-result(p>2),including the existence and uniqueness of the p-th power integrable solution,a p-th power estimate,and a related continuous dependence property of the solution on the coefficients,for coupled linear FBSDEs in the monotonicity framework over large time intervals.In order to get rid of the stubborn constraint commonly existing in the literature,i.e.,the Lipschitz constant of σ with respect to z is very small,we introduce a linear transformation to overcome the difficulty on small intervals,and then"splice"the L^(P)-results obtained on many small intervals to yield the desired one on a large interval. 展开更多
关键词 Forward-backward stochastic differential equation L^(P)-estimate monotonicity condition large interval
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部