An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computa...An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computation model for slotted-waveguide antenna is presented by using thin current probe excitation and perfectly matched layer(PML)absorber.Since each slotted-waveguide antenna can be considered as a single sub-domain,the domain decomposition algorithm(DDA)can be applied to FE-BI-MLFMA to greatly reduce the computation resources and achieve high efficiency.This DDA-FE-BI-MLMFA is parallelized to further strength its capability.The comparisons of the computed radiation patterns with measured data and results from the commercial software show that our method has good accuracy for slottedwaveguide array.Then the influence of mutual coupling between adjacent slotted-waveguides is studied.To demonstrate capability of the presented method,a carefully designed large X-band slotted-waveguide antenna array containing eighteen waveguides with Taylor amplitude and inverse phase excitation distribution are analyzed in the paper.展开更多
The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed...The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed that the cells groupings time-shift pilots scheme is effective to reduce inter-cell interference, especially pilot contamination, which results from the pilot reuse in adjacent cells. However, they have not specified reasonable cells groupings factor, which plays a critical role in the general performance of the LSAS. Therefore, this problem is researched in details. The time for reverse-link data transmission will be compressed, when the groupings factor surpasses a certain range. Thus it is not always beneficial to increase the cells groupings factor without limitation. Furthermore,a reasonable cells groupings factor is deduced from the perspective of optimization to enhance the system performance. Simulations verify the proposed cell grouping factor.展开更多
An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with...An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.展开更多
The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X ...The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.展开更多
Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are dev...Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.展开更多
基金Supported by the National Key Basic Research Program(973 Program)(2012CB720702,61320602)the 111 Project of China(B14010)the National Natural Science Foundation of China(61371002)
文摘An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computation model for slotted-waveguide antenna is presented by using thin current probe excitation and perfectly matched layer(PML)absorber.Since each slotted-waveguide antenna can be considered as a single sub-domain,the domain decomposition algorithm(DDA)can be applied to FE-BI-MLFMA to greatly reduce the computation resources and achieve high efficiency.This DDA-FE-BI-MLMFA is parallelized to further strength its capability.The comparisons of the computed radiation patterns with measured data and results from the commercial software show that our method has good accuracy for slottedwaveguide array.Then the influence of mutual coupling between adjacent slotted-waveguides is studied.To demonstrate capability of the presented method,a carefully designed large X-band slotted-waveguide antenna array containing eighteen waveguides with Taylor amplitude and inverse phase excitation distribution are analyzed in the paper.
基金supported by the National Natural Science Foundation of China(6110602261574013)
文摘The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed that the cells groupings time-shift pilots scheme is effective to reduce inter-cell interference, especially pilot contamination, which results from the pilot reuse in adjacent cells. However, they have not specified reasonable cells groupings factor, which plays a critical role in the general performance of the LSAS. Therefore, this problem is researched in details. The time for reverse-link data transmission will be compressed, when the groupings factor surpasses a certain range. Thus it is not always beneficial to increase the cells groupings factor without limitation. Furthermore,a reasonable cells groupings factor is deduced from the perspective of optimization to enhance the system performance. Simulations verify the proposed cell grouping factor.
文摘An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.
基金supported by National Natural Science Foundation of China(12273098).
文摘The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.
基金sponsored by the National Natural Science Foundation of China (No. 11272172)
文摘Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.