The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress chan...The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.展开更多
Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scatteri...Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scattering effect of the heterogeneities inside the earth.Here,we use records of seven large earthquakes at globally distributed seismic stations to examine the decay of long-period(100 s to 300 s)coda in the time window of 10,000 s to 140,000 s after the origin time and fit it with a statistical model.The geometric spreading effect in the estimated initial energy and a locationindependent equivalent attenuation coefficient indicate that the long-period coda energy is less affected by the heterogeneity-induced scattering effect than that of shorterperiod coda.The coda energy can reach the earth’s inner core and can be explained by a 1D earth model,making it more effective for constraining the global attenuation model.It also has the potential to determine the magnitudes of large earthquakes and to explore the interior of planetary bodies.展开更多
In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan s...In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.展开更多
This paper studies the imminent anomalies observed by the Sacks volume strainmeter in Erzhangying station and Tiantanghe station before 80 earthquakes with Ms≥ 7. 0 which took place from January 2011 to April 2014 al...This paper studies the imminent anomalies observed by the Sacks volume strainmeter in Erzhangying station and Tiantanghe station before 80 earthquakes with Ms≥ 7. 0 which took place from January 2011 to April 2014 all over the world. Then, preconditions for anomaly identification are put forward for complex earthquake cases. Statistical results show that volume strain observation has a better earthquake reflecting ability for earthquakes with magnitudes larger than 7. 0 and epicentral distance within 8000kin. In addition, these results also reflect that the volume strain observation can better reflect precursory anomalies of such earthquakes. Based on categorization and description of those anomalies, we divide the anomalies into three types, that is, earth tide distortion type, abrupt change type and slow earthquake type. Furthermore, the paper makes a statistical analysis of these types and preliminarily discusses their mechanical properties as well. According to research, volume strain anomaly has an indicative significance to future strong earthquakes in the world.展开更多
Based on the statistical results of the relationship between the large earthquakes surrounding Xinjiang and moderate earthquakes within Xinjiang since 1950,this article calculates the Coulomb failure stress change pro...Based on the statistical results of the relationship between the large earthquakes surrounding Xinjiang and moderate earthquakes within Xinjiang since 1950,this article calculates the Coulomb failure stress change produced by the three groups of large earthquakes surrounding Xinjiang during the large earthquake active period outside Xinjiang and the quiet period inside Xinjiang from 1976 to 2007,and analyzes Xinjiang's moderate earthquake activity features in the three years after the large earthquakes surrounding Xinjiang. It then discusses the influence of large earthquake activity surrounding Xinjiang on seismic activity within Xinjiang. The research results show that the large earthquake activity surrounding Xinjiang may to a certain extent slow down the preparation process of moderate earthquakes in Xinjiang.展开更多
This paper expounds the quantitative tectonic indicators and some qualitative indicators of large earthquakes in the coast areas of Fujian, Guangdong, Taiwan and Hainan. The main quantitative indicators include uplift...This paper expounds the quantitative tectonic indicators and some qualitative indicators of large earthquakes in the coast areas of Fujian, Guangdong, Taiwan and Hainan. The main quantitative indicators include uplift amplitude of the Moho, Quaternary and Late Holocene coasts. The paper also gives a brief account of the research method on quantitative indicators of surface uplifted zones. Taiwan is a famous neotectonic zone and an area of large earthquakes in the world. There is only one large-earthquake area in each of Fujian, Guangdong and Hainan Provinces. Along the coast large earthquake areas there are certainly many remains of crustal activity. Among these remains, coast activity, taking the sea level as the accurate marker horizon, can determine not only the amplitude of coastal elevation and subsidence in a certain period, but also the cycle and rate of positive or negative movements.展开更多
Because of the confining compression of the Pacific, Eurasian and Indian plates, the Chinese mainland is frequently stricken with earthquakes, especially in the Qinghai Tibet Plateau and surrounding areas and along th...Because of the confining compression of the Pacific, Eurasian and Indian plates, the Chinese mainland is frequently stricken with earthquakes, especially in the Qinghai Tibet Plateau and surrounding areas and along the NS-trending tectonic zone from Yinchuan to Lanzhou, Chengdu, and finally to the Kunming tectonic belt (Fig. 1). Historical records show that there are 14 earthquakes of 〉Ms 8 occurring in the two regions, eight of which occurred along the latter tectonic belt. The 2008 Wenchuan earthquake located on both the NS tectonic zone and the Longmenshan fault zone along the eastern margin of the Qinghai-Tibet Plateau.展开更多
Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic bloc...Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.展开更多
Ambient noise tomography(ANT)has been widely used to image crust and upmost mantle structures.ANT assumes that sources of ambient noise are diffuse and evenly distributed in space and the energy of different modes is ...Ambient noise tomography(ANT)has been widely used to image crust and upmost mantle structures.ANT assumes that sources of ambient noise are diffuse and evenly distributed in space and the energy of different modes is equipartitioned.At present,the sources of the primary and the secondary microseisms are well studied,but there are only a few on the studies of long-period ambient noise sources.In this study,we study the effects of large earthquake signals on the recovery of surface waves from seismic ambient noise data recorded by seismic stations from the US permanent networks and Global Seismographic Network(GSN).Our results show that large earthquake signals play an important role on the recovery of long-period surface waves from ambient noise cross-correlation functions.Our results are consistent with previous studies that suggest the contribution of earthquake signals to the recovery of surface waves from cross-correlations of ambient noise is dominant at periods larger than 20–40 s.展开更多
The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthqua...The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthquakes have occurred frequently along this block's boundaries, which has received much attention among geoscientists. Whether large earthquakes will happen (and where) along this block's boundary faults in the future are two key problems that need to be addressed. This study calculates the accumulated tectonic stress and superposition of the coulomb stress caused by fault slip of 16 large earthquakes since 1904, and evaluates the possible locations of future earthquakes that may occur around this block.展开更多
Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken ...Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken into account in the study of med-and long-term earthquake prediction,due to the temporally clustering or non-linear behavior of large earthquake recurrence.In order to explore technical methods which can be based on observational data,and identify historical earthquake rupture zones( including the seismic gap in historical and prehistoric earthquake rupture zones),we select eight historical large earthquake rupture zones with different elapsed times on the mid-north segment of the North-South Seismic Belt to make quantitative analysis on the characteristics of modern seismicity of these zones and preliminarily explore the seismicity method for determining the urgency degree of potential earthquake hazards.The results mainly show that the pvalue,which reflects the attenuation of earthquake sequence,and the a-value,which reflects the seismicity rate,are strongly related to the elapsed time of the latest earthquake in the rupture zone.However,the corresponding relationships in some rupture areas are not clear perhaps due to the complex fault structure and faulting behavior.The b-value,which represents the state of tectonic stress accumulation,does not easily reflect the elapsed time information of different evolution stages.The b-value temporal scanning shows a steady evolution over time in most of the rupture zones,but in the rupture zone of the Wudu M8.0 earthquake of 1879,the b-value shows significant fluctuations with a decreasing trend for 20 years.By comparative analysis,we conclude that the rupture zones of the 1933 M7.5 Maoxian earthquake and the 1976 M7.2 Songpan-Pingwu earthquake are still in the decaying period of earthquake sequences,and thus do not have the background for recurrence of M7.0 earthquakes.The low b-value Maqu segment,which is located at the north margin of the rupture zone of the 842A.D.M7.0 Diebu earthquake,is more dangerous than the Diebu segment.The continuous decline of the b-value in the 1879 M8.0 Wudu earthquake rupture zone may also indicate a new round of seismogenic process.展开更多
The paper discusses the spatial and temporal distribution of seismic activity in the southwestern part of the Western Tien Shan. The study identifies four groups of strong earthquakes that occurred in Western and Cent...The paper discusses the spatial and temporal distribution of seismic activity in the southwestern part of the Western Tien Shan. The study identifies four groups of strong earthquakes that occurred in Western and Central Uzbekistan. The regularity of redistribution of the accumulated tectonic energy in the form of shuttle migration of seismicity with the recurrence rate of a group of strong earthquakes has been revealed. The synchronicity of periods of seismic activation of the Western Tien Shan (regional structure) and the Asian part of the Mediterranean-Asian seismic belt (structure of a large-regional scale) was found. At the same time, deviations from synchronicity are noted in the form of delays in the periods of seismic activation between the considered structures. The seismicity study revealed a deviation from the regularity of grouping of strong earthquakes in the seismic regime of the region. This was observed in the Gazli earthquakes. The strongest triple Gazli earthquakes of 1976 and 1984 with М = 7.0</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">7.3 were preceded by natural and technogenic triggers. Natural triggers included active fracturing (large fractures up to 100 km in length) in the north of Tamdybulak area, the absence any of tangible </span><span style="font-family:Verdana;">earthquakes in the epicentral area of Gazli for more than 40 years, and the appearance of small mud volcanoes</span></span><span style="font-family:Verdana;">—griffins before a strong earthquake. The technogenic triggers included a 40-year gas pumping at the Gazli fields and two underground nuclear explosions in 1966 (#273) and 1968 (#142) produced near the epicenter of the tectonic Gazli earthquakes of 1976 and 1984.展开更多
In modern society, the population, wealth and social functions are increasingly concentrated in a few large cities. Such concentration brings about efficiency while at the same time it increases the vulnerability of t...In modern society, the population, wealth and social functions are increasingly concentrated in a few large cities. Such concentration brings about efficiency while at the same time it increases the vulnerability of the society. To address this issue, the Science Council of Japan(SCJ) published a proposal entitled "Shape Cities and Societies Safer against Severe Earthquakes". It makes a variety of suggestions for enhancing the seismic resilience of large cities, including:(1) comprehensive thinking based on the latest scientific knowledge and rich imagination;(2) selection of sites suitable for residence and social activities;(3) introducing the urban seismic coefficient;(4) promoting the enhancement of the seismic performance of buildings and civil structures;(5) easing the concentration of population and functions;(6) building communities that enable shelter and escape;(7) resilient technology of information and communication system and its effective utilization;(8) preparation and implementation of emergency response after earthquakes;(9) development and application of new structural seismic technology;(10) learning from domestic and foreign earthquake disasters and launching of international cooperation and knowledge sharing and(11) taking actions from a multidisciplinary perspective. The proposal is introduced in this paper.展开更多
基金supported by grants 09-05-00014-a, and 08-05-90201-Mong_a from the Russian Foundation for Basic Research
文摘The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.
基金the National Natural Science Foundation of China(No.U1939204).
文摘Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scattering effect of the heterogeneities inside the earth.Here,we use records of seven large earthquakes at globally distributed seismic stations to examine the decay of long-period(100 s to 300 s)coda in the time window of 10,000 s to 140,000 s after the origin time and fit it with a statistical model.The geometric spreading effect in the estimated initial energy and a locationindependent equivalent attenuation coefficient indicate that the long-period coda energy is less affected by the heterogeneity-induced scattering effect than that of shorterperiod coda.The coda energy can reach the earth’s inner core and can be explained by a 1D earth model,making it more effective for constraining the global attenuation model.It also has the potential to determine the magnitudes of large earthquakes and to explore the interior of planetary bodies.
基金jointly sponsored by the National Key Technology R&D Program(2012BAK19B01-04)the Special Fund of Youth Working Group,Institute of Earthquake Science,China Earthquake Administration
文摘In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.
基金Combined project of monitoring,prediction and research of China Earthquake Administration entitled "Statistical study on the earthquake cases of imminent anomaly in Sacks volume strain measurements(154201)""Special Fund for Basic Scientific Research of Institute of Earthquake Science,CEA(2012IES010202)""Research on Regional Tectonic Stability for the Dateng Gorge Water Conservancy Hub Project Site(880456)"
文摘This paper studies the imminent anomalies observed by the Sacks volume strainmeter in Erzhangying station and Tiantanghe station before 80 earthquakes with Ms≥ 7. 0 which took place from January 2011 to April 2014 all over the world. Then, preconditions for anomaly identification are put forward for complex earthquake cases. Statistical results show that volume strain observation has a better earthquake reflecting ability for earthquakes with magnitudes larger than 7. 0 and epicentral distance within 8000kin. In addition, these results also reflect that the volume strain observation can better reflect precursory anomalies of such earthquakes. Based on categorization and description of those anomalies, we divide the anomalies into three types, that is, earth tide distortion type, abrupt change type and slow earthquake type. Furthermore, the paper makes a statistical analysis of these types and preliminarily discusses their mechanical properties as well. According to research, volume strain anomaly has an indicative significance to future strong earthquakes in the world.
基金sponsored the National Key TechnologyR&D Program (2006BAC 01B03-04-02),China
文摘Based on the statistical results of the relationship between the large earthquakes surrounding Xinjiang and moderate earthquakes within Xinjiang since 1950,this article calculates the Coulomb failure stress change produced by the three groups of large earthquakes surrounding Xinjiang during the large earthquake active period outside Xinjiang and the quiet period inside Xinjiang from 1976 to 2007,and analyzes Xinjiang's moderate earthquake activity features in the three years after the large earthquakes surrounding Xinjiang. It then discusses the influence of large earthquake activity surrounding Xinjiang on seismic activity within Xinjiang. The research results show that the large earthquake activity surrounding Xinjiang may to a certain extent slow down the preparation process of moderate earthquakes in Xinjiang.
基金This project was sponsored by the Joint Seismological Science Foundation Grant 2296203
文摘This paper expounds the quantitative tectonic indicators and some qualitative indicators of large earthquakes in the coast areas of Fujian, Guangdong, Taiwan and Hainan. The main quantitative indicators include uplift amplitude of the Moho, Quaternary and Late Holocene coasts. The paper also gives a brief account of the research method on quantitative indicators of surface uplifted zones. Taiwan is a famous neotectonic zone and an area of large earthquakes in the world. There is only one large-earthquake area in each of Fujian, Guangdong and Hainan Provinces. Along the coast large earthquake areas there are certainly many remains of crustal activity. Among these remains, coast activity, taking the sea level as the accurate marker horizon, can determine not only the amplitude of coastal elevation and subsidence in a certain period, but also the cycle and rate of positive or negative movements.
文摘Because of the confining compression of the Pacific, Eurasian and Indian plates, the Chinese mainland is frequently stricken with earthquakes, especially in the Qinghai Tibet Plateau and surrounding areas and along the NS-trending tectonic zone from Yinchuan to Lanzhou, Chengdu, and finally to the Kunming tectonic belt (Fig. 1). Historical records show that there are 14 earthquakes of 〉Ms 8 occurring in the two regions, eight of which occurred along the latter tectonic belt. The 2008 Wenchuan earthquake located on both the NS tectonic zone and the Longmenshan fault zone along the eastern margin of the Qinghai-Tibet Plateau.
基金The work was supported bythe public welfare programofthe Ministry of Science and Technology of China (2004DIA3J010)the special preparatoryresearch of national keyfun-damental research project (2002CCD01700)the Young Scientists Funds of Institute of Earthquake Science , CEA(QN200401) .
文摘Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.
基金supported by the National Natural Science Foundation of China(No.41874058).
文摘Ambient noise tomography(ANT)has been widely used to image crust and upmost mantle structures.ANT assumes that sources of ambient noise are diffuse and evenly distributed in space and the energy of different modes is equipartitioned.At present,the sources of the primary and the secondary microseisms are well studied,but there are only a few on the studies of long-period ambient noise sources.In this study,we study the effects of large earthquake signals on the recovery of surface waves from seismic ambient noise data recorded by seismic stations from the US permanent networks and Global Seismographic Network(GSN).Our results show that large earthquake signals play an important role on the recovery of long-period surface waves from ambient noise cross-correlation functions.Our results are consistent with previous studies that suggest the contribution of earthquake signals to the recovery of surface waves from cross-correlations of ambient noise is dominant at periods larger than 20–40 s.
基金supported by Geological Survey programs from Geological Survey of China(No.1212011120163 and 12120114002101)Basic Science Research Fund of the Institute of Geomechanics,CAGS (No.DZLXJK201212)National Natural Science Foundation of China (No.41171009)
文摘The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthquakes have occurred frequently along this block's boundaries, which has received much attention among geoscientists. Whether large earthquakes will happen (and where) along this block's boundary faults in the future are two key problems that need to be addressed. This study calculates the accumulated tectonic stress and superposition of the coulomb stress caused by fault slip of 16 large earthquakes since 1904, and evaluates the possible locations of future earthquakes that may occur around this block.
基金funded jointly by National Science&Technology Pillar Program,China(Grant No.2012BAK19B01)the Task-oriented Contract for Seismic Regime Monitoring(2010020304)
文摘Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken into account in the study of med-and long-term earthquake prediction,due to the temporally clustering or non-linear behavior of large earthquake recurrence.In order to explore technical methods which can be based on observational data,and identify historical earthquake rupture zones( including the seismic gap in historical and prehistoric earthquake rupture zones),we select eight historical large earthquake rupture zones with different elapsed times on the mid-north segment of the North-South Seismic Belt to make quantitative analysis on the characteristics of modern seismicity of these zones and preliminarily explore the seismicity method for determining the urgency degree of potential earthquake hazards.The results mainly show that the pvalue,which reflects the attenuation of earthquake sequence,and the a-value,which reflects the seismicity rate,are strongly related to the elapsed time of the latest earthquake in the rupture zone.However,the corresponding relationships in some rupture areas are not clear perhaps due to the complex fault structure and faulting behavior.The b-value,which represents the state of tectonic stress accumulation,does not easily reflect the elapsed time information of different evolution stages.The b-value temporal scanning shows a steady evolution over time in most of the rupture zones,but in the rupture zone of the Wudu M8.0 earthquake of 1879,the b-value shows significant fluctuations with a decreasing trend for 20 years.By comparative analysis,we conclude that the rupture zones of the 1933 M7.5 Maoxian earthquake and the 1976 M7.2 Songpan-Pingwu earthquake are still in the decaying period of earthquake sequences,and thus do not have the background for recurrence of M7.0 earthquakes.The low b-value Maqu segment,which is located at the north margin of the rupture zone of the 842A.D.M7.0 Diebu earthquake,is more dangerous than the Diebu segment.The continuous decline of the b-value in the 1879 M8.0 Wudu earthquake rupture zone may also indicate a new round of seismogenic process.
文摘The paper discusses the spatial and temporal distribution of seismic activity in the southwestern part of the Western Tien Shan. The study identifies four groups of strong earthquakes that occurred in Western and Central Uzbekistan. The regularity of redistribution of the accumulated tectonic energy in the form of shuttle migration of seismicity with the recurrence rate of a group of strong earthquakes has been revealed. The synchronicity of periods of seismic activation of the Western Tien Shan (regional structure) and the Asian part of the Mediterranean-Asian seismic belt (structure of a large-regional scale) was found. At the same time, deviations from synchronicity are noted in the form of delays in the periods of seismic activation between the considered structures. The seismicity study revealed a deviation from the regularity of grouping of strong earthquakes in the seismic regime of the region. This was observed in the Gazli earthquakes. The strongest triple Gazli earthquakes of 1976 and 1984 with М = 7.0</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">7.3 were preceded by natural and technogenic triggers. Natural triggers included active fracturing (large fractures up to 100 km in length) in the north of Tamdybulak area, the absence any of tangible </span><span style="font-family:Verdana;">earthquakes in the epicentral area of Gazli for more than 40 years, and the appearance of small mud volcanoes</span></span><span style="font-family:Verdana;">—griffins before a strong earthquake. The technogenic triggers included a 40-year gas pumping at the Gazli fields and two underground nuclear explosions in 1966 (#273) and 1968 (#142) produced near the epicenter of the tectonic Gazli earthquakes of 1976 and 1984.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A05
文摘In modern society, the population, wealth and social functions are increasingly concentrated in a few large cities. Such concentration brings about efficiency while at the same time it increases the vulnerability of the society. To address this issue, the Science Council of Japan(SCJ) published a proposal entitled "Shape Cities and Societies Safer against Severe Earthquakes". It makes a variety of suggestions for enhancing the seismic resilience of large cities, including:(1) comprehensive thinking based on the latest scientific knowledge and rich imagination;(2) selection of sites suitable for residence and social activities;(3) introducing the urban seismic coefficient;(4) promoting the enhancement of the seismic performance of buildings and civil structures;(5) easing the concentration of population and functions;(6) building communities that enable shelter and escape;(7) resilient technology of information and communication system and its effective utilization;(8) preparation and implementation of emergency response after earthquakes;(9) development and application of new structural seismic technology;(10) learning from domestic and foreign earthquake disasters and launching of international cooperation and knowledge sharing and(11) taking actions from a multidisciplinary perspective. The proposal is introduced in this paper.