NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1...NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.展开更多
The characteristics of water vapor transport(WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin(YRB) are analyzed by using the upper-air station data in China and ECMWF reanal...The characteristics of water vapor transport(WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin(YRB) are analyzed by using the upper-air station data in China and ECMWF reanalysis data in summer from 1981 to 2002.The results indicate that the first mode of the vertically integrated WVT is significant whose spatial distribution presents water vapor convergence or divergence in the YRB.When the Western Pacific Subtropical High(WPSH) is strong and shifts southward and westward, the Indian Monsoon Low Pressure(IMLP) is weak, and the northern part of China stands behind the middle and high latitude trough, a large amount of water vapor from the Bay of Bengal(BOB), the South China Sea(SCS) and the western Pacific forms a strong and steady southwest WVT band and meets the strong cold water vapor from northern China in the YRB, thus it is likely to cause flood in the YRB.When WPSH is weak and shifts northward and eastward, IMLP is strong, and there is nearly straight west wind over the middle and high latitude, it is unfavorable for oceanic vapor extending to China and no steady and strong southwest WVT exists in the region south of the YRB.Meanwhile, the cold air from northern China is weak and can hardly be transported to the YRB.This brings on no obvious water vapor convergence, and then less precipitation in the YRB.展开更多
Since 2001, the French and Chinese researchers have done a cooperative research on the comparison of integrated development of large fiver basins. The Yangtze River was chosen as a crux of this research and linked wit...Since 2001, the French and Chinese researchers have done a cooperative research on the comparison of integrated development of large fiver basins. The Yangtze River was chosen as a crux of this research and linked with other older river experiments like the Rhone, the Nile and the Mississippi. This research includes not only the environmental issues but also economic and social issues. One special issue journal has been published in French for our research results. Other two collective and comparative books in French and Chinese will be finished at the end of this year. In the future, the comparison should be widened to Italy (the Po), Egypt (the Nile development planning) and the United States (the Mississippi Basin) and we would like to enlarge our research group and want to link up different teams and research projects, in order to get a global understanding of large fiver regions phenomenon.展开更多
The present paper shows that a seasonal prediction for the large scale flooding and waterlogging of the mid-lower Yangtze/ Huaihe River basins in the summer of 1991 made successfully in early April 1991.The seasonal f...The present paper shows that a seasonal prediction for the large scale flooding and waterlogging of the mid-lower Yangtze/ Huaihe River basins in the summer of 1991 made successfully in early April 1991.The seasonal forecasting method and some predictors are also introduced and analyzed herein. Because the extra extent of the abnormally early onset of the plum rain period in 1991 was unexpected,great efforts have been made to find out the causes of this abnormality. These causes are mainly associated with the large scale warming of SST surrounding the south and east part of Asia during the preceding winter,while the ENSO-like pattern of SSTA occurred in the North Pacific.In addition,the possible influence of strong solar proton events is analyzed.In order to improve the seasonal pre4iction the usage of the predicted SOl in following spring/summer is also introduced.The author believes thatthe regional climate anomaly can be correctly predicted for one season ahead only on the basis of physical understanding of the interactions of many preceding factors.展开更多
Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yan...Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.展开更多
Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins ...Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins for the 21 years(1990–2010),using the daily rain gauge measurements taken in the 756 stations throughout China and the NCEP/reanalysis data for the rainyseasons(June–July)from 1990 to 2010.The major differences in the atmospheric circulations and physical quantity fields between the Yangtze and Huaihe River basins are as follows:for flooding years of the Yangtze River Basin,the South Asia high center is located further east than normal,the blocking high over the Urals and the Sea of Okhotsk maintains,and the Meiyu front is situated near 30°N whereas for flooding years of the Huaihe River Basin,the South Asia high center is further west than normal,the atmospheric circulations over the mid and high latitudes in the Northern Hemisphere are of meridional distribution,and the Meiyu front is situated near 33°N.In addition,there are distinct differences in water vapor sources and associated transports between the Yangtze and Huaihe River basins.The water vapor is transported by southwesterly flows from the Bay of Bengal and monsoon flows over the South China Sea for flooding years of the Yangtze River Basin whereas by southeast monsoons from the eastern and southern seas off China and monsoon flows over the South China Sea for flooding years of the Huaihe River Basin.展开更多
The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) pheno...The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) phenomenon and a long-cycle droughts-floods abrupt alternation index (LDFAI) in the middle and lower reaches of the Yangtze River (MLYRV) is defined to quantify this phenomenon. The large-scale atmospheric circula- tion features in the anomalous LDFA years are ex- amined statistically. Results demonstrate that the summer droughts-to-floods (DTF) in the MLYRV usually accompany with the more southward western Pacific subtropical high (WPSH), negative vorticity, strong divergence, descending movements develop- ing and the weak moisture transport in the low level, the more southward position of the South Asia high (SAH) and the westerly jets in the high level during May―June, but during July―August it is in the other way, northward shift of the WPSH, positive vorticity, strong convergence, ascending movements and strong moisture transport in the low level, and the northward shift of the SAH and the westerly jets in the high level. While for the summer floods-to-droughts (FTD) in the MLYRV it often goes with the active coldair mass from the high latitude, positive vorticity, strong convergence, ascending movement develop- ing and the strong moisture transport in the low level, and the SAH over the Tibetan Plateau in the high level, but during July―August it is often connected with the negative vorticity, strong divergence, de- scending movements developing and the weak moisture transport in the low level, the remarkable northward shift of the WPSH, the SAH extending northeastward to North China and the easterly jets prevailing in the high level over the MLYRV. In addi- tion, the summer LDFA in the MLYRV is of significant relationship with the Southern Hemisphere annual mode and the Northern Hemisphere annual mode in the preceding February, which offers some predictive signals for the summer LDFA forecasting in the MLYRV.展开更多
The drought and flood over the Yangtze River basin are closely related to the anomaly of the general circulation. The impacts of the disasters resulting from it on the China national economy are of great importance. A...The drought and flood over the Yangtze River basin are closely related to the anomaly of the general circulation. The impacts of the disasters resulting from it on the China national economy are of great importance. Attention is paid to them by meteorologists and forecasters in China. Most of the previous studies on it used the conventional data. Because the weather satellite observation has the advantages of continuity, homogeneous spatial and temporal resolution and global coverage, it greatly makes up the defect of the conventional measurements. The outgoing longwave radiation (OLR) observed from展开更多
Flood disasters have been a serious restraint to the sustainable development of the Yangtze River Basin (YRB). After analyzing the major causes to the flood disasters of YRB, the paper proposes an integrated flood dis...Flood disasters have been a serious restraint to the sustainable development of the Yangtze River Basin (YRB). After analyzing the major causes to the flood disasters of YRB, the paper proposes an integrated flood disaster prevention system for the sustainable development of the YRB. The starting point of the system is to rationally coordinate the relationship of population, environment and economy.展开更多
基金National Natural Science Foundation of China(41275080)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306022)Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(PAEKL-2010-C3)
文摘NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.
基金International Technology Cooperation Project of the Ministry of Science and Technology of China,No. 2007DFB20210Application Technology Research and Development Project of Sichuan Province,No. 2008NG0009Basic Research Foundation of Institute of Chengdu Plateau, China Meteorological Administration,No.BROP2000802
文摘The characteristics of water vapor transport(WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin(YRB) are analyzed by using the upper-air station data in China and ECMWF reanalysis data in summer from 1981 to 2002.The results indicate that the first mode of the vertically integrated WVT is significant whose spatial distribution presents water vapor convergence or divergence in the YRB.When the Western Pacific Subtropical High(WPSH) is strong and shifts southward and westward, the Indian Monsoon Low Pressure(IMLP) is weak, and the northern part of China stands behind the middle and high latitude trough, a large amount of water vapor from the Bay of Bengal(BOB), the South China Sea(SCS) and the western Pacific forms a strong and steady southwest WVT band and meets the strong cold water vapor from northern China in the YRB, thus it is likely to cause flood in the YRB.When WPSH is weak and shifts northward and eastward, IMLP is strong, and there is nearly straight west wind over the middle and high latitude, it is unfavorable for oceanic vapor extending to China and no steady and strong southwest WVT exists in the region south of the YRB.Meanwhile, the cold air from northern China is weak and can hardly be transported to the YRB.This brings on no obvious water vapor convergence, and then less precipitation in the YRB.
文摘Since 2001, the French and Chinese researchers have done a cooperative research on the comparison of integrated development of large fiver basins. The Yangtze River was chosen as a crux of this research and linked with other older river experiments like the Rhone, the Nile and the Mississippi. This research includes not only the environmental issues but also economic and social issues. One special issue journal has been published in French for our research results. Other two collective and comparative books in French and Chinese will be finished at the end of this year. In the future, the comparison should be widened to Italy (the Po), Egypt (the Nile development planning) and the United States (the Mississippi Basin) and we would like to enlarge our research group and want to link up different teams and research projects, in order to get a global understanding of large fiver regions phenomenon.
文摘The present paper shows that a seasonal prediction for the large scale flooding and waterlogging of the mid-lower Yangtze/ Huaihe River basins in the summer of 1991 made successfully in early April 1991.The seasonal forecasting method and some predictors are also introduced and analyzed herein. Because the extra extent of the abnormally early onset of the plum rain period in 1991 was unexpected,great efforts have been made to find out the causes of this abnormality. These causes are mainly associated with the large scale warming of SST surrounding the south and east part of Asia during the preceding winter,while the ENSO-like pattern of SSTA occurred in the North Pacific.In addition,the possible influence of strong solar proton events is analyzed.In order to improve the seasonal pre4iction the usage of the predicted SOl in following spring/summer is also introduced.The author believes thatthe regional climate anomaly can be correctly predicted for one season ahead only on the basis of physical understanding of the interactions of many preceding factors.
基金AV,MM,RS,AGT and NPK were supported by the COSMIC project through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund,contract number P106301.NPK was supported by a Natural Environmental Research Council(NERC)Independent Research Fellowship(NE/L010976/1)and by the ACREW programme of the National Centre for Atmospheric Science.We thank Omar V.MÜLLER for help with GloFAS-ERA5.
文摘Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.
基金supported by the National Basic Research Program of China (Grant No. 2013CB430105)the National Natural Science Foundation of China (Grant Nos. 40775038, 40875031 & 40975036)the Foreign Professors Projects of Chinese Academy of Sciences (Grant No. 2010-c-6)
文摘Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins for the 21 years(1990–2010),using the daily rain gauge measurements taken in the 756 stations throughout China and the NCEP/reanalysis data for the rainyseasons(June–July)from 1990 to 2010.The major differences in the atmospheric circulations and physical quantity fields between the Yangtze and Huaihe River basins are as follows:for flooding years of the Yangtze River Basin,the South Asia high center is located further east than normal,the blocking high over the Urals and the Sea of Okhotsk maintains,and the Meiyu front is situated near 30°N whereas for flooding years of the Huaihe River Basin,the South Asia high center is further west than normal,the atmospheric circulations over the mid and high latitudes in the Northern Hemisphere are of meridional distribution,and the Meiyu front is situated near 33°N.In addition,there are distinct differences in water vapor sources and associated transports between the Yangtze and Huaihe River basins.The water vapor is transported by southwesterly flows from the Bay of Bengal and monsoon flows over the South China Sea for flooding years of the Yangtze River Basin whereas by southeast monsoons from the eastern and southern seas off China and monsoon flows over the South China Sea for flooding years of the Huaihe River Basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.40523001 and 40221503)the National Basic Research Program of China(Grant No.2004CB418303).
文摘The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) phenomenon and a long-cycle droughts-floods abrupt alternation index (LDFAI) in the middle and lower reaches of the Yangtze River (MLYRV) is defined to quantify this phenomenon. The large-scale atmospheric circula- tion features in the anomalous LDFA years are ex- amined statistically. Results demonstrate that the summer droughts-to-floods (DTF) in the MLYRV usually accompany with the more southward western Pacific subtropical high (WPSH), negative vorticity, strong divergence, descending movements develop- ing and the weak moisture transport in the low level, the more southward position of the South Asia high (SAH) and the westerly jets in the high level during May―June, but during July―August it is in the other way, northward shift of the WPSH, positive vorticity, strong convergence, ascending movements and strong moisture transport in the low level, and the northward shift of the SAH and the westerly jets in the high level. While for the summer floods-to-droughts (FTD) in the MLYRV it often goes with the active coldair mass from the high latitude, positive vorticity, strong convergence, ascending movement develop- ing and the strong moisture transport in the low level, and the SAH over the Tibetan Plateau in the high level, but during July―August it is often connected with the negative vorticity, strong divergence, de- scending movements developing and the weak moisture transport in the low level, the remarkable northward shift of the WPSH, the SAH extending northeastward to North China and the easterly jets prevailing in the high level over the MLYRV. In addi- tion, the summer LDFA in the MLYRV is of significant relationship with the Southern Hemisphere annual mode and the Northern Hemisphere annual mode in the preceding February, which offers some predictive signals for the summer LDFA forecasting in the MLYRV.
基金Project partly supported by the National Natural Science Foundation of China.
文摘The drought and flood over the Yangtze River basin are closely related to the anomaly of the general circulation. The impacts of the disasters resulting from it on the China national economy are of great importance. Attention is paid to them by meteorologists and forecasters in China. Most of the previous studies on it used the conventional data. Because the weather satellite observation has the advantages of continuity, homogeneous spatial and temporal resolution and global coverage, it greatly makes up the defect of the conventional measurements. The outgoing longwave radiation (OLR) observed from
文摘Flood disasters have been a serious restraint to the sustainable development of the Yangtze River Basin (YRB). After analyzing the major causes to the flood disasters of YRB, the paper proposes an integrated flood disaster prevention system for the sustainable development of the YRB. The starting point of the system is to rationally coordinate the relationship of population, environment and economy.