By means of the analysis of the internal flow within inlet passage of large pumping sta-tion, an analysis of 3-D direct boundary element for the flow has been presented on the potentialflow assumption, and a calculati...By means of the analysis of the internal flow within inlet passage of large pumping sta-tion, an analysis of 3-D direct boundary element for the flow has been presented on the potentialflow assumption, and a calculation and an experimental proof for the inlet passage of 30 angle-type axial pumping station have been made. Based on the analysis of the calculations and theexperiments, the calculation method is feasible and believable.展开更多
Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational effi...Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational efficiency of the large axial-flow pumping station.Modeling and numerical simulation methods were used to investigate the elbow-inlet passage,and the accuracy of the calculation results was verified.The key geometric parameters affecting the uniformity of the flow were optimized by the orthogonal experiment design.The optimal schemes were obtained and compared with the original scheme.The results show that flow uniformity V u after optimization is 95.41%,which is increased by 1.04%.The pumping station efficiency is increased by 1.89%,thereby confirming the applicability and accuracy of the proposed scheme,especially for the optimization of flow uniformity of the exit section of the elbow-inlet passage.展开更多
文摘By means of the analysis of the internal flow within inlet passage of large pumping sta-tion, an analysis of 3-D direct boundary element for the flow has been presented on the potentialflow assumption, and a calculation and an experimental proof for the inlet passage of 30 angle-type axial pumping station have been made. Based on the analysis of the calculations and theexperiments, the calculation method is feasible and believable.
基金Natural Science Foundation of China(51806053)Anhui Provincial Key Research and Development Program(1804a09020012,1804a09020007)
文摘Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational efficiency of the large axial-flow pumping station.Modeling and numerical simulation methods were used to investigate the elbow-inlet passage,and the accuracy of the calculation results was verified.The key geometric parameters affecting the uniformity of the flow were optimized by the orthogonal experiment design.The optimal schemes were obtained and compared with the original scheme.The results show that flow uniformity V u after optimization is 95.41%,which is increased by 1.04%.The pumping station efficiency is increased by 1.89%,thereby confirming the applicability and accuracy of the proposed scheme,especially for the optimization of flow uniformity of the exit section of the elbow-inlet passage.