The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X ...The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.展开更多
This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible f...This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.展开更多
In order to reduce the cost,3-PRS mechanism is introduced into the application of supporting theactive reflector unit of large radio telescope.The kinematic model of 3-PRS mechanism with rotationaljoint errors is deri...In order to reduce the cost,3-PRS mechanism is introduced into the application of supporting theactive reflector unit of large radio telescope.The kinematic model of 3-PRS mechanism with rotationaljoint errors is derived to solve the error problem in actual engineering application.Then based on the errormodel,inverse and forward kinematics are analyzed.Because the solutions can not be analytically ex-pressed,a numerical method is applied.Afterwards,the parasitic motion errors are analyzed using searchmethod and empirical formulas of the maximum parasitic motion error are put forward.Finally,the toler-ance is distributed using empirical formulas to avoid interference between adjacent reflector units.Theanalyses provide a theoretical basis for the design and installation of large radio telescope active reflector.展开更多
The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope...The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope.To study the non-uniform temperature field of the main reflector of a large radio telescope,numerical calculations including thermal environment factors,the coefficients on convection and radiation,and the shadow boundary of the main reflector are first discussed.In addition,the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis.The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven,and the maximum of the root mean square temperature is 12.3℃.To verify the simulation results,an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day.At the same time,some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure.It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement,and the cosine similarity between the simulation and the measurement is above 90%.Despite the inevitable thermal imaging errors caused by large viewing angles,the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent.The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation.It is credible to calculate the temperature field of the main reflector through the finite element method.This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.展开更多
The curve equation and its mechanics analysis of suspended-cable under the condition of end load are given. Then on the basis of it, the mechanical analysis of suspended-cable system for large spherical radio-telescop...The curve equation and its mechanics analysis of suspended-cable under the condition of end load are given. Then on the basis of it, the mechanical analysis of suspended-cable system for large spherical radio-telescope is studied, and procedures of the control for the orbit tracking movement of the line feed in large spherical radiotelescope are given. The validity of the results mentioned above is confirmed by means of computer simulations.展开更多
A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. Th...A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China.展开更多
This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model...This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.展开更多
The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(a...The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(arcsec);thus,the telescope structure must satisfy ultra-high precision requirements.In this pur-suit,the present research envisages a reverse-design method for the track surface to reduce the difficulty of the telescope’s design and manufacture.First,the distribution characteristics of the test data for the track error were verified using the skewness coefficient and kurtosis coefficient methods.According to the distribution characteristics,the azimuth track error was simulated by a two-scale model.The error of the long period and short amplitude was characterized as large-scale and described by a trigonometric function,while the short period and high amplitude error was characterized as small-scale and simulated by a fractal function.Based on the two-scale model,effect of the error on the pointing accuracy was deduced.Subsequently,the relationship between the root mean square(RMS)of the track error and the RMS of the pointing accuracy error of the telescope was deduced.Finally,the allowable RMS value of the track error was derived from the allowable pointing accuracy errors.To validate the effectiveness of the new design method,two typical radio telescopes(the Green Bank Telescope(GBT)and the Large Millimeter Telescope(LMT))were selected as experimental examples.Through comparison,the theoretical calculated values of the pointing accuracy of the telescope were consistent with the measured values,with a maximum error of less than 10%.展开更多
A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density ...A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density topology optimization method,the effectiveness of force cone method is verified.This kind of new method is simple and easy to understand(no need to master complex structural optimization design theory).Besides,it is time-saving in finite element calculations,and can obtain an optimized truss layout easily.By drawing the force cone,its application on a large radio telescope’s back frame structure shows that,compared with the existing one in terms of structural stiffness,Root Mean Square(RMS)precision,and beam stress distribution,the optimized back frame using the force cone method has higher stiffness,better RMS,more uniform stress,and lighter weight.展开更多
基金supported by National Natural Science Foundation of China(12273098).
文摘The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.
基金supported by the National Key Basic Research and Development Program of China(2021YFC22035-01)the National Natural Science Foundation of China(U1931137).
文摘This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.
基金the National High Technology Research and Development Programme of China(No.2006AA04Z133)the National Natural Science Foundation of China(No.50605035,10778625)
文摘In order to reduce the cost,3-PRS mechanism is introduced into the application of supporting theactive reflector unit of large radio telescope.The kinematic model of 3-PRS mechanism with rotationaljoint errors is derived to solve the error problem in actual engineering application.Then based on the errormodel,inverse and forward kinematics are analyzed.Because the solutions can not be analytically ex-pressed,a numerical method is applied.Afterwards,the parasitic motion errors are analyzed using searchmethod and empirical formulas of the maximum parasitic motion error are put forward.Finally,the toler-ance is distributed using empirical formulas to avoid interference between adjacent reflector units.Theanalyses provide a theoretical basis for the design and installation of large radio telescope active reflector.
基金the Astronomical Joint Fund of National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)the National Natural Science Foundation of China(11673040 and 11803053)。
文摘The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope.To study the non-uniform temperature field of the main reflector of a large radio telescope,numerical calculations including thermal environment factors,the coefficients on convection and radiation,and the shadow boundary of the main reflector are first discussed.In addition,the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis.The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven,and the maximum of the root mean square temperature is 12.3℃.To verify the simulation results,an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day.At the same time,some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure.It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement,and the cosine similarity between the simulation and the measurement is above 90%.Despite the inevitable thermal imaging errors caused by large viewing angles,the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent.The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation.It is credible to calculate the temperature field of the main reflector through the finite element method.This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.
文摘The curve equation and its mechanics analysis of suspended-cable under the condition of end load are given. Then on the basis of it, the mechanical analysis of suspended-cable system for large spherical radio-telescope is studied, and procedures of the control for the orbit tracking movement of the line feed in large spherical radiotelescope are given. The validity of the results mentioned above is confirmed by means of computer simulations.
基金Supported by the National Natural Science Foundation of China
文摘A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China.
基金Supported by the National Basic Research Program of China ( No. 2007CB714007) , the National Natural Science Foundation of China ( No. 50975149) , and the Important National Science & Technology Specific Projects of China (No. 2009ZX04014-.035, 2009ZX04001-042-02).
文摘This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.
基金financial support from the National Natural Science Foundation of China (51775402 and U1931139)
文摘The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(arcsec);thus,the telescope structure must satisfy ultra-high precision requirements.In this pur-suit,the present research envisages a reverse-design method for the track surface to reduce the difficulty of the telescope’s design and manufacture.First,the distribution characteristics of the test data for the track error were verified using the skewness coefficient and kurtosis coefficient methods.According to the distribution characteristics,the azimuth track error was simulated by a two-scale model.The error of the long period and short amplitude was characterized as large-scale and described by a trigonometric function,while the short period and high amplitude error was characterized as small-scale and simulated by a fractal function.Based on the two-scale model,effect of the error on the pointing accuracy was deduced.Subsequently,the relationship between the root mean square(RMS)of the track error and the RMS of the pointing accuracy error of the telescope was deduced.Finally,the allowable RMS value of the track error was derived from the allowable pointing accuracy errors.To validate the effectiveness of the new design method,two typical radio telescopes(the Green Bank Telescope(GBT)and the Large Millimeter Telescope(LMT))were selected as experimental examples.Through comparison,the theoretical calculated values of the pointing accuracy of the telescope were consistent with the measured values,with a maximum error of less than 10%.
文摘A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density topology optimization method,the effectiveness of force cone method is verified.This kind of new method is simple and easy to understand(no need to master complex structural optimization design theory).Besides,it is time-saving in finite element calculations,and can obtain an optimized truss layout easily.By drawing the force cone,its application on a large radio telescope’s back frame structure shows that,compared with the existing one in terms of structural stiffness,Root Mean Square(RMS)precision,and beam stress distribution,the optimized back frame using the force cone method has higher stiffness,better RMS,more uniform stress,and lighter weight.