期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Local and global approaches of affinity propagation clustering for large scale data 被引量:15
1
作者 Ding-yin XIA Fei WU +1 位作者 Xu-qing ZHAN Yue-ting ZHUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1373-1381,共9页
Recently a new clustering algorithm called 'affinity propagation' (AP) has been proposed, which efficiently clustered sparsely related data by passing messages between data points. However, we want to cluster ... Recently a new clustering algorithm called 'affinity propagation' (AP) has been proposed, which efficiently clustered sparsely related data by passing messages between data points. However, we want to cluster large scale data where the similarities are not sparse in many cases. This paper presents two variants of AP for grouping large scale data with a dense similarity matrix. The local approach is partition affinity propagation (PAP) and the global method is landmark affinity propagation (LAP). PAP passes messages in the subsets of data first and then merges them as the number of initial step of iterations; it can effectively reduce the number of iterations of clustering. LAP passes messages between the landmark data points first and then clusters non-landmark data points; it is a large global approximation method to speed up clustering. Experiments are conducted on many datasets, such as random data points, manifold subspaces, images of faces and Chinese calligraphy, and the results demonstrate that the two ap-proaches are feasible and practicable. 展开更多
关键词 CLUSTERING Affinity propagation large scale data Partition affinity propagation Landmark affinity propagation
下载PDF
Large scale classification with local diversity AdaBoost SVM algorithm 被引量:5
2
作者 Chang Tiantian Liu Hongwei Zhou Shuisheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1344-1350,共7页
Local diversity AdaBoost support vector machine(LDAB-SVM) is proposed for large scale dataset classification problems.The training dataset is split into several blocks firstly, and some models based on these dataset... Local diversity AdaBoost support vector machine(LDAB-SVM) is proposed for large scale dataset classification problems.The training dataset is split into several blocks firstly, and some models based on these dataset blocks are built.In order to obtain a better performance, AdaBoost is used in each model building.In the boosting iteration step, the component learners which have higher diversity and accuracy are collected via the kernel parameters adjusting.Then the local models via voting method are integrated.The experimental study shows that LDAB-SVM can deal with large scale dataset efficiently without reducing the performance of the classifier. 展开更多
关键词 ensemble learning large scale data support vector machine ADABOOST DIVERSITY local.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部