ENSO is an interannual mode which may be affected by external forcing, such as volcanic eruptions. Based on the reconstructed volcanic eruptions chronology and ENSO sequences, both 195 large volcanic eruptions (VEI≥4...ENSO is an interannual mode which may be affected by external forcing, such as volcanic eruptions. Based on the reconstructed volcanic eruptions chronology and ENSO sequences, both 195 large volcanic eruptions (VEI≥4) and 398 ENSO (El Niño and La Niña) events were extracted from 1525 to 2000. An analysis of the correspondence between the large volcanic eruptions and ENSO events was performed by matching the large volcanic eruptions with the types and magnitudes of ENSO events present in the 0-2 years after the eruptions. The results show the following: (1) The percentages of ENSO events within the 3 years after the large eruptions had increased to 68.3% from 31.7% compared with those with no-eruptions in the previous 0-2 years. In addition, the ratio of El Niño to La Niña events turned from 2:3 to 1:1, and more El Niño events occurred in the 0 year after eruptions in the low-latitudes of the Northern Hemisphere and in the tropics but more La Niña events occurred in the 0 year after in the high-latitudes of the Northern Hemisphere and the Southern Hemisphere. (2) After the eruptions, the weak (W) El Niño events had increased by 8 percentage points and the very strong (VS) El Niño events had decreased by 10 percentage points; conversely, there was a decrease by 15 percentage points of the weak La Niña events and an increase by 11.4 percentage points of the very strong La Niña events. Specifically, the percentages of strong La Niña events increased to a peak at 1 (+1) year after the eruptions. (3) The percentage of eruptions followed by single-year ENSO was the greatest. The percentage of ENSO events that occurred in the consecutive 2 years following an eruption was approximately equal to the percentage of events that occurred consecutively 3 years following an eruption, and both sets of ENSO magnitudes showed a decreasing trend.展开更多
Using the dataset provided by the Smithsonian Institution's Global Volcanism Program, we have extracted the large volcanic eruptions(volcanic explosivity index ≥ 4) from the period 1750–2010 and have then analyze...Using the dataset provided by the Smithsonian Institution's Global Volcanism Program, we have extracted the large volcanic eruptions(volcanic explosivity index ≥ 4) from the period 1750–2010 and have then analyzed the main characteristics of large volcanic eruptions since 1750 according to their geographic latitudes, their elevations, and the years and months in which they occurred. The results show that most large volcanic eruptions were located around the margins of the Pacific Ocean and the islands of Sumatra and Java, especially in the equatorial regions(10°N–10°S). Large volcanic eruptions were concentrated at 1000–2000 m elevations and in the months of January and April. There were more eruptions in the summer half-year(from April to September) than in the winter half-year(from October to the next March). Large volcanic eruptions have interdecadal fluctuations, including cycles of 15–25 years and 35–50 years, which were detected by Morlet wavelet analysis, with the fluctuations being more frequent after 1870 than before. During the periods 1750–1760, 1776–1795, 1811–1830, 1871–1890, 1911–1920 and 1981–1995, there were relatively many large volcanic eruptions.展开更多
基金National Natural Science Foundation of China,No.41430528。
文摘ENSO is an interannual mode which may be affected by external forcing, such as volcanic eruptions. Based on the reconstructed volcanic eruptions chronology and ENSO sequences, both 195 large volcanic eruptions (VEI≥4) and 398 ENSO (El Niño and La Niña) events were extracted from 1525 to 2000. An analysis of the correspondence between the large volcanic eruptions and ENSO events was performed by matching the large volcanic eruptions with the types and magnitudes of ENSO events present in the 0-2 years after the eruptions. The results show the following: (1) The percentages of ENSO events within the 3 years after the large eruptions had increased to 68.3% from 31.7% compared with those with no-eruptions in the previous 0-2 years. In addition, the ratio of El Niño to La Niña events turned from 2:3 to 1:1, and more El Niño events occurred in the 0 year after eruptions in the low-latitudes of the Northern Hemisphere and in the tropics but more La Niña events occurred in the 0 year after in the high-latitudes of the Northern Hemisphere and the Southern Hemisphere. (2) After the eruptions, the weak (W) El Niño events had increased by 8 percentage points and the very strong (VS) El Niño events had decreased by 10 percentage points; conversely, there was a decrease by 15 percentage points of the weak La Niña events and an increase by 11.4 percentage points of the very strong La Niña events. Specifically, the percentages of strong La Niña events increased to a peak at 1 (+1) year after the eruptions. (3) The percentage of eruptions followed by single-year ENSO was the greatest. The percentage of ENSO events that occurred in the consecutive 2 years following an eruption was approximately equal to the percentage of events that occurred consecutively 3 years following an eruption, and both sets of ENSO magnitudes showed a decreasing trend.
基金National Natural Science Foundation of China,No.41430528 Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA05080100+1 种基金 China Global Change Research Program,No.2010CB950100 Jiangsu Collaborative Innovation Center for Climate Change
文摘Using the dataset provided by the Smithsonian Institution's Global Volcanism Program, we have extracted the large volcanic eruptions(volcanic explosivity index ≥ 4) from the period 1750–2010 and have then analyzed the main characteristics of large volcanic eruptions since 1750 according to their geographic latitudes, their elevations, and the years and months in which they occurred. The results show that most large volcanic eruptions were located around the margins of the Pacific Ocean and the islands of Sumatra and Java, especially in the equatorial regions(10°N–10°S). Large volcanic eruptions were concentrated at 1000–2000 m elevations and in the months of January and April. There were more eruptions in the summer half-year(from April to September) than in the winter half-year(from October to the next March). Large volcanic eruptions have interdecadal fluctuations, including cycles of 15–25 years and 35–50 years, which were detected by Morlet wavelet analysis, with the fluctuations being more frequent after 1870 than before. During the periods 1750–1760, 1776–1795, 1811–1830, 1871–1890, 1911–1920 and 1981–1995, there were relatively many large volcanic eruptions.