In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,...In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.展开更多
Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize cl...Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time.展开更多
This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clusterin...This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency.展开更多
Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stag...Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model.展开更多
Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets...Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets.This paper focuses on cluster analysis based on neutrosophic set implication,i.e.,a k-means algorithm with a threshold-based clustering technique.This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm.To evaluate the validity of the proposed method,several validity measures and validity indices are applied to the Iris dataset(from the University of California,Irvine,Machine Learning Repository)along with k-means and threshold-based clustering algorithms.The proposed method results in more segregated datasets with compacted clusters,thus achieving higher validity indices.The method also eliminates the limitations of threshold-based clustering algorithm and validates measures and respective indices along with k-means and threshold-based clustering algorithms.展开更多
Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP...Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP) was proposed to solve the problem.DP cut the source data set into data blocks,and extracted the eigenvector for each data block to form the local feature set.The local feature set was used in the second round of the characteristics polymerization process for the source data to find the global eigenvector.Ultimately according to the global eigenvector,the data set was assigned by criterion of minimum distance.The experimental results show that it is more robust than the conventional clusterings.Characteristics of not sensitive to data dimensions,distribution and number of nature clustering make it have a wide range of applications in clustering VLDS.展开更多
Big data clustering plays an important role in the field of data processing in wireless sensor networks.However,there are some problems such as poor clustering effect and low Jaccard coefficient.This paper proposes a ...Big data clustering plays an important role in the field of data processing in wireless sensor networks.However,there are some problems such as poor clustering effect and low Jaccard coefficient.This paper proposes a novel big data clustering optimization method based on intuitionistic fuzzy set distance and particle swarm optimization for wireless sensor networks.This method combines principal component analysis method and information entropy dimensionality reduction to process big data and reduce the time required for data clustering.A new distance measurement method of intuitionistic fuzzy sets is defined,which not only considers membership and non-membership information,but also considers the allocation of hesitancy to membership and non-membership,thereby indirectly introducing hesitancy into intuitionistic fuzzy set distance.The intuitionistic fuzzy kernel clustering algorithm is used to cluster big data,and particle swarm optimization is introduced to optimize the intuitionistic fuzzy kernel clustering method.The optimized algorithm is used to obtain the optimization results of wireless sensor network big data clustering,and the big data clustering is realized.Simulation results show that the proposed method has good clustering effect by comparing with other state-of-the-art clustering methods.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
基金This research has been partially supported by the national natural science foundation of China (51175169) and the national science and technology support program (2012BAF02B01).
文摘In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.
基金Supported by National Natural Science Foundation of China(60675039)National High Technology Research and Development Program of China(863 Program)(2006AA04Z217)Hundred Talents Program of Chinese Academy of Sciences
基金This research is funded by Graduate University of Science and Technology under grant number GUST.STS.DT2020-TT01。
文摘Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time.
文摘This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R113)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model.
文摘Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets.This paper focuses on cluster analysis based on neutrosophic set implication,i.e.,a k-means algorithm with a threshold-based clustering technique.This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm.To evaluate the validity of the proposed method,several validity measures and validity indices are applied to the Iris dataset(from the University of California,Irvine,Machine Learning Repository)along with k-means and threshold-based clustering algorithms.The proposed method results in more segregated datasets with compacted clusters,thus achieving higher validity indices.The method also eliminates the limitations of threshold-based clustering algorithm and validates measures and respective indices along with k-means and threshold-based clustering algorithms.
基金Projects(60903082,60975042)supported by the National Natural Science Foundation of ChinaProject(20070217043)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP) was proposed to solve the problem.DP cut the source data set into data blocks,and extracted the eigenvector for each data block to form the local feature set.The local feature set was used in the second round of the characteristics polymerization process for the source data to find the global eigenvector.Ultimately according to the global eigenvector,the data set was assigned by criterion of minimum distance.The experimental results show that it is more robust than the conventional clusterings.Characteristics of not sensitive to data dimensions,distribution and number of nature clustering make it have a wide range of applications in clustering VLDS.
基金2021 Scientific Research Funding Project of Liaoning Provincial Education Department(Research and implementation of university scientific research information platform serving the transformation of achievements).
文摘Big data clustering plays an important role in the field of data processing in wireless sensor networks.However,there are some problems such as poor clustering effect and low Jaccard coefficient.This paper proposes a novel big data clustering optimization method based on intuitionistic fuzzy set distance and particle swarm optimization for wireless sensor networks.This method combines principal component analysis method and information entropy dimensionality reduction to process big data and reduce the time required for data clustering.A new distance measurement method of intuitionistic fuzzy sets is defined,which not only considers membership and non-membership information,but also considers the allocation of hesitancy to membership and non-membership,thereby indirectly introducing hesitancy into intuitionistic fuzzy set distance.The intuitionistic fuzzy kernel clustering algorithm is used to cluster big data,and particle swarm optimization is introduced to optimize the intuitionistic fuzzy kernel clustering method.The optimized algorithm is used to obtain the optimization results of wireless sensor network big data clustering,and the big data clustering is realized.Simulation results show that the proposed method has good clustering effect by comparing with other state-of-the-art clustering methods.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.