期刊文献+
共找到39,687篇文章
< 1 2 250 >
每页显示 20 50 100
A Large-Scale Scheduling Method for Multiple Agile Optical Satellites
1
作者 Zheng Liu Wei Xiong Minghui Xiong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1143-1163,共21页
This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,comple... This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,complex constraints,and considerable solution space.To solve the problem,we propose a scheduling method based on an improved sine and cosine algorithm and a task merging approach.We first establish a scheduling model with task merging constraints and observation action constraints to describe the problem.Then,an improved sine and cosine algorithm is proposed to search for the optimal solution with the maximum profit ratio.An adaptive cosine factor and an adaptive greedy factor are adopted to improve the algorithm.Besides,a taskmerging method with a task reallocation mechanism is developed to improve the scheduling efficiency.Experimental results demonstrate the superiority of the proposed algorithm over the comparison algorithms. 展开更多
关键词 Multiple agile optical satellites scheduling task merging sine and cosine algorithm task reallocation
下载PDF
A Layered Energy-Efficient Multi-Node Scheduling Mechanism for Large-Scale WSN
2
作者 Xue Zhao Shaojun Tao +2 位作者 Hongying Tang Jiang Wang Baoqing Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1335-1351,共17页
In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criti... In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criticalobjectives in this scenario. The existing mechanisms still have weaknesses in balancing the two demands. Theproposed heuristic multi-node collaborative scheduling mechanism (HMNCS) comprises cluster head (CH)election, pre-selection, and task set selectionmechanisms, where the latter two kinds of selections forma two-layerselection mechanism. The CH election innovatively introduces the movement trend of the target and establishesa scoring mechanism to determine the optimal CH, which can delay the CH rotation and thus reduce energyconsumption. The pre-selection mechanism adaptively filters out suitable nodes as the candidate task set to applyfor tracking tasks, which can reduce the application consumption and the overhead of the following task setselection. Finally, the task node selection is mathematically transformed into an optimization problem and thegenetic algorithm is adopted to form a final task set in the task set selection mechanism. Simulation results showthat HMNCS outperforms other compared mechanisms in the tracking accuracy and the network lifetime. 展开更多
关键词 Node scheduling pre-selection target tracking WSN
下载PDF
Multi-network-region traffic cooperative scheduling in large-scale LEO satellite networks
3
作者 LI Chengxi WANG Fu +8 位作者 YAN Wei CUI Yansong FAN Xiaodong ZHU Guangyu XIE Yanxi YANG Lixin ZHOU Luming ZHAO Ran WANG Ning 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期829-841,共13页
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea... A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%. 展开更多
关键词 low-Earth-orbit(LEO)satellite network satellite communication load balance multi-region scheduling latency optimization
下载PDF
Large-Scale Vehicle Platooning:Advances and Challenges in Scheduling and Planning Techniques 被引量:1
4
作者 Jing Hou Guang Chen +5 位作者 Jin Huang Yingjun Qiao Lu Xiong Fuxi Wen Alois Knoll Changjun Jiang 《Engineering》 SCIE EI CAS CSCD 2023年第9期26-48,共23页
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu... Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications. 展开更多
关键词 Autonomous vehicle platoon Autonomous driving Connected and automated vehicles scheduling and planning techniques
下载PDF
An Effective Neighborhood Solution Clipping Method for Large-Scale Job Shop Scheduling Problem
5
作者 Sihan Wang Xinyu Li Qihao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1871-1890,共20页
The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increa... The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increases,the difficulty of solving the problem exponentially increases.Therefore,a major challenge is to increase the solving efficiency of current algorithms.Modifying the neighborhood structure of the solutions can effectively improve the local search ability and efficiency.In this paper,a genetic Tabu search algorithm with neighborhood clipping(GTS_NC)is proposed for solving JSSP.A neighborhood solution clipping method is developed and embedded into Tabu search to improve the efficiency of the local search by clipping the search actions of unimproved neighborhood solutions.Moreover,a feasible neighborhood solution determination method is put forward,which can accurately distinguish feasible neighborhood solutions from infeasible ones.Both of the methods are based on the domain knowledge of JSSP.The proposed algorithmis compared with several competitive algorithms on benchmark instances.The experimental results show that the proposed algorithm can achieve superior results compared to other competitive algorithms.According to the numerical results of the experiments,it is verified that the neighborhood solution clippingmethod can accurately identify the unimproved solutions and reduces the computational time by at least 28%. 展开更多
关键词 Job shop scheduling MAKESPAN Tabu search genetic algorithm
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
6
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
7
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
8
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing scheduling chimp optimization algorithm whale optimization algorithm
下载PDF
DR-IS:Dynamic Response Incremental Scheduling in Time-Sensitive Network
9
作者 Pei Jinchuan Hu Yuxiang +1 位作者 Tian Le Li Ziyong 《China Communications》 SCIE CSCD 2024年第10期28-42,共15页
Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s... Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN. 展开更多
关键词 incremental scheduling time-sensitive network traffic scheduling transmission jitter
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
10
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
11
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
12
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
下载PDF
A Novel Scheduling Framework for Multi-Programming Quantum Computing in Cloud Environment
13
作者 Danyang Zheng Jinchen Xv +3 位作者 Feng Yue Qiming Du ZhihengWang Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第5期1957-1974,共18页
As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources ha... As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity,which in turn hampers users from achieving optimal satisfaction.Therefore,cloud quantum computing service providers require a unified analysis and scheduling framework for their quantumresources and user jobs to meet the ever-growing usage demands.This paper introduces a new multi-programming scheduling framework for quantum computing in a cloud environment.The framework addresses the issue of limited quantum computing resources in cloud environments and ensures a satisfactory user experience.It introduces three innovative designs:1)Our framework automatically allocates tasks to different quantum backends while ensuring fairness among users by considering both the cloud-based quantum resources and the user-submitted tasks.2)Multi-programming mechanism is employed across different quantum backends to enhance the overall throughput of the quantum cloud.In comparison to conventional task schedulers,our proposed framework achieves a throughput improvement of more than two-fold in the quantum cloud.3)The framework can balance fidelity and user waiting time by adaptively adjusting scheduling parameters. 展开更多
关键词 Quantum computing scheduling multi-programming qubit mapping
下载PDF
Dynamic Offloading and Scheduling Strategy for Telematics Tasks Based on Latency Minimization
14
作者 Yu Zhou Yun Zhang +4 位作者 Guowei Li Hang Yang Wei Zhang Ting Lyu Yueqiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期1809-1829,共21页
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ... In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG). 展开更多
关键词 Component vehicular DYNAMIC task offloading resource scheduling
下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
15
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 Load aggregation Regional large-scale Online recognition Feature extraction method
下载PDF
A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
16
作者 Chenguang Ouyang Suxing Hu +6 位作者 Fengqi Long Shuai Shi Zhichao Yu Kaichun Zhao Zheng You Junyin Pi Bowen Xing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期1-10,共10页
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework... Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m. 展开更多
关键词 large-scale positioning Building vector matching Improved particle filter GPS-Denied Vector map
下载PDF
A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network
17
作者 Ming Gao Weiwei Cai +3 位作者 Yizhang Jiang Wenjun Hu Jian Yao Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期259-277,共19页
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se... Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results. 展开更多
关键词 Edge computing resource scheduling predictive models
下载PDF
Performance Prediction Based Workload Scheduling in Co-Located Cluster
18
作者 Dongyang Ou Yongjian Ren Congfeng Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2043-2067,共25页
Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster,where the resources can be pooled in order to maximize data center resource utilization.Due to resource competi... Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster,where the resources can be pooled in order to maximize data center resource utilization.Due to resource competition between batch jobs and online services,co-location frequently impairs the performance of online services.This study presents a quality of service(QoS)prediction-based schedulingmodel(QPSM)for co-locatedworkloads.The performance prediction of QPSM consists of two parts:the prediction of an online service’s QoS anomaly based on XGBoost and the prediction of the completion time of an offline batch job based on randomforest.On-line service QoS anomaly prediction is used to evaluate the influence of batch jobmix on on-line service performance,and batch job completion time prediction is utilized to reduce the total waiting time of batch jobs.When the same number of batch jobs are scheduled in experiments using typical test sets such as CloudSuite,the scheduling time required by QPSM is reduced by about 6 h on average compared with the first-come,first-served strategy and by about 11 h compared with the random scheduling strategy.Compared with the non-co-located situation,QPSM can improve CPU resource utilization by 12.15% and memory resource utilization by 5.7% on average.Experiments show that the QPSM scheduling strategy proposed in this study can effectively guarantee the quality of online services and further improve cluster resource utilization. 展开更多
关键词 Co-located cluster workload scheduling online service batch jobs data center
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
19
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
20
作者 Qianyao Zhu Kaizhou Gao +2 位作者 Wuze Huang Zhenfang Ma Adam Slowik 《Computers, Materials & Continua》 SCIE EI 2024年第9期3573-3589,共17页
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S... The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness. 展开更多
关键词 Distributed scheduling hybrid flow shop META-HEURISTICS local search Q-LEARNING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部