ASTRUM(Automated Statistical Treatment of Uncertainty Method)分析方法是美国西屋公司开发的能够自动执行不确定性计算的最佳估算方法。在该方法中,对于部分对大破口LOCA(Loss of Coolant Accident)事故计算结果具有重要影响的参数...ASTRUM(Automated Statistical Treatment of Uncertainty Method)分析方法是美国西屋公司开发的能够自动执行不确定性计算的最佳估算方法。在该方法中,对于部分对大破口LOCA(Loss of Coolant Accident)事故计算结果具有重要影响的参数,采用了参数保守性确认分析的办法,以确定其保守的取值组合。然后,在此基础上执行对其它参数抽样的ASTRUM最佳估算。这种做法对于不同的事故工况或抽样工况得到的保守性参数取值组合可能不同,具有一定的偶然性,在固定这些参数保守组合的基础上再对其余参数抽样进行最佳估算,可能会导致ASTRUM计算结果出现一定程度的偏差。本文取消了原ASTRUM方法中参数保守性确认分析这一环节,通过开发自编的BE_SAMPLE抽样程序,对原参数保守性确认分析中的重要参数进行抽样,执行了全参数的抽样统计分析,并给出了优化结论,它可以为后续ASTRUM方法的优化和研究提供参考。展开更多
Nuclear reactor safety(NRS)and the branch accident analysis(AA)constitute proven technologies:these are based on,among the other things,long lasting research and operational experience in the area of water cooled nucl...Nuclear reactor safety(NRS)and the branch accident analysis(AA)constitute proven technologies:these are based on,among the other things,long lasting research and operational experience in the area of water cooled nuclear reactors(WCNR).Large break loss of coolant accident(LBLOCA)has been,so far,the orienting scenario within AA and a basis for the design of reactors.An incomplete vision for those technologies during the last few years is as follows:Progress in fundamentals was stagnant,namely in those countries where the WCNR were designed.Weaknesses became evident,noticeably in relation to nuclear fuel under high burn-up.Best estimate plus uncertainty(BEPU)techniques were perfected and available for application.Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked(however,quite irrelevant in case of LBLOCA).The time delay between technological discoveries and applications was becoming longer.The present paper deals with the LBLOCA that is inserted into the above context.Key conclusion is that regulations need suitable modification,rather than lowering the importance and the role of LBLOCA.Moreover,strengths of emergency core cooling system(ECCS)and containment need a tight link.展开更多
文摘ASTRUM(Automated Statistical Treatment of Uncertainty Method)分析方法是美国西屋公司开发的能够自动执行不确定性计算的最佳估算方法。在该方法中,对于部分对大破口LOCA(Loss of Coolant Accident)事故计算结果具有重要影响的参数,采用了参数保守性确认分析的办法,以确定其保守的取值组合。然后,在此基础上执行对其它参数抽样的ASTRUM最佳估算。这种做法对于不同的事故工况或抽样工况得到的保守性参数取值组合可能不同,具有一定的偶然性,在固定这些参数保守组合的基础上再对其余参数抽样进行最佳估算,可能会导致ASTRUM计算结果出现一定程度的偏差。本文取消了原ASTRUM方法中参数保守性确认分析这一环节,通过开发自编的BE_SAMPLE抽样程序,对原参数保守性确认分析中的重要参数进行抽样,执行了全参数的抽样统计分析,并给出了优化结论,它可以为后续ASTRUM方法的优化和研究提供参考。
基金the Institutional Funds ofUniversity of Pisa,Italy。
文摘Nuclear reactor safety(NRS)and the branch accident analysis(AA)constitute proven technologies:these are based on,among the other things,long lasting research and operational experience in the area of water cooled nuclear reactors(WCNR).Large break loss of coolant accident(LBLOCA)has been,so far,the orienting scenario within AA and a basis for the design of reactors.An incomplete vision for those technologies during the last few years is as follows:Progress in fundamentals was stagnant,namely in those countries where the WCNR were designed.Weaknesses became evident,noticeably in relation to nuclear fuel under high burn-up.Best estimate plus uncertainty(BEPU)techniques were perfected and available for application.Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked(however,quite irrelevant in case of LBLOCA).The time delay between technological discoveries and applications was becoming longer.The present paper deals with the LBLOCA that is inserted into the above context.Key conclusion is that regulations need suitable modification,rather than lowering the importance and the role of LBLOCA.Moreover,strengths of emergency core cooling system(ECCS)and containment need a tight link.