This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a...This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.展开更多
The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s...The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.展开更多
This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly m...This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.展开更多
The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal...The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.展开更多
Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation ...Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and tre...BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ...BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.展开更多
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf lif...Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.展开更多
The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which over...The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.展开更多
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.
文摘The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.
基金supported by the National Key R&D Program of China with Grant number 2019YFB1803400the National Natural Science Foundation of China under Grant number 62071114the Fundamental Research Funds for the Central Universities of China under grant numbers 3204002004A2 and 2242022k30005。
文摘This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.
基金supported by the National Natural Science Foundation of China(Grant No.11772192).
文摘The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.
基金supported by the National Natural Science Foundation of China (Grant No.11772192).
文摘Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金the Beijing Hope Run Special Fund of Cancer Foundation of China,No.LC2020L05.
文摘BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.
基金Supported by The National Natural Science Foundation of China,No.82104989.
文摘BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金the Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2021-ZFRI)China Agriculture Research System of MOF and MARA(Grant No.CARS-25-03)+3 种基金National Nature Science Foundation of China(Grant Nos.31672178 and 31471893)the Natural Science Foundation of Henan Province(Grant No.212300410312)the scientific and technological research in Henan Province(Grant No.202102110398)the key project of the Action of“Rejuvenating Mongolia with Science and Technology”(Grant No.NMKJXM202114).
文摘Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.
文摘The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.