Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st...Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,...Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g...Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.展开更多
Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurat...Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration p...The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.展开更多
Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its...Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.展开更多
Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges r...Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges related to inadequate mass transfer and a high pressure drop caused by the non-uniform void fraction distribution.To enhance the overall performance of fixed beds,the impact of different packing configurations on performance was investigated.Experimental and simulation methods were used to investigate the fluid flow and mass transfer performances of various packed beds under different flow rates.It was found that structured beds exhibited a significantly lower pressure drop per unit length than conventional packed beds.Furthermore,the packing configurations had a critical role in improving the overall performance of fixed beds.Specifically,structured packed beds,particularly the H-2 packing configuration,effectively reduced the pressure drop per unit length and improved the mass transfer efficiency.The H-2 packing configuration consisted of two parallel strips of particles in each layer,with strips arranged perpendicularly between adjacent layers,and the spacing between the strips varied from layer to layer.展开更多
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
基金supported by the National Natural Science Foundation of China(51904059)Applied Basic Research Program of Liaoning(2022JH2/101300200)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515140188)Fundamental Research Funds for the Central Universities(N_(2)002005,N_(2)125004,N_(2)225044)。
文摘Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
文摘We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
基金supported by the Natural Science Foundation of China (22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province (BK20230035)+1 种基金the Fundamental Research Funds for the Central Universities (30922010303)the Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (2022YFE0196800)
文摘Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金support of the National Natural Science Foundation of China(U20A20111,42107189).
文摘Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金the financial support provided by the National Natural Science Foundation of China[Grant No.72373138 and 71973131]Major Project of National Social Science Foundation of China[Grant No.19VHQ002].
文摘The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.
基金supported by the National Natural Science Foundation of China(52074046,52122403,51834003,and 52274073)the Graduate Research and Innovation Foundation of Chongqing(CYB22023)+2 种基金the Chongqing Talents Plan for Young Talents(cstc2022ycjh-bgzxm0035)Hunan Institute of Engineering(21RC025 and XJ2005)Hunan Province Education Department(21B0664).
文摘Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.
文摘Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges related to inadequate mass transfer and a high pressure drop caused by the non-uniform void fraction distribution.To enhance the overall performance of fixed beds,the impact of different packing configurations on performance was investigated.Experimental and simulation methods were used to investigate the fluid flow and mass transfer performances of various packed beds under different flow rates.It was found that structured beds exhibited a significantly lower pressure drop per unit length than conventional packed beds.Furthermore,the packing configurations had a critical role in improving the overall performance of fixed beds.Specifically,structured packed beds,particularly the H-2 packing configuration,effectively reduced the pressure drop per unit length and improved the mass transfer efficiency.The H-2 packing configuration consisted of two parallel strips of particles in each layer,with strips arranged perpendicularly between adjacent layers,and the spacing between the strips varied from layer to layer.