Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by c...We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.展开更多
The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the ...The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.展开更多
Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR ...This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.展开更多
The technique of aerial photography has been used in the surveying and Mapping for more than fifty years. Along with the development of space technolongy, the satellite images are more and more widely applied to solve...The technique of aerial photography has been used in the surveying and Mapping for more than fifty years. Along with the development of space technolongy, the satellite images are more and more widely applied to solve the survey problems. Recent years, the surveying and mapping community has conducted more deeply investigation into the remote sensing and carried out extensive applications.展开更多
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc...According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.展开更多
为提高航测数据自动成图效果,提出基于地理信息系统软件(Map Geographic Information System,MapGIS)的无人机航测数据自动成图方法。应用MapGIS技术构建航测数字化体系,采集无人机航测数据,并基于数据质量控制原则校正数据,根据采集结...为提高航测数据自动成图效果,提出基于地理信息系统软件(Map Geographic Information System,MapGIS)的无人机航测数据自动成图方法。应用MapGIS技术构建航测数字化体系,采集无人机航测数据,并基于数据质量控制原则校正数据,根据采集结果将地形图进行数字线划图处理,实现无人机航测数据自动成图。实验结果表明,设计方法在实际应用过程中效果更佳。提高无人机航测数据质量的分析和控制效果,保证无人机航测数据自动成图效果。展开更多
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us...This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight.展开更多
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
文摘We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.
基金This research was supported by National Natural Science Foundation of China(Nos.U1913603,61803251,51775322)National Key Research and Development Program of China(No.2019YFB1310003).
文摘The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.
文摘Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
基金jointly supported by the National Natural Science Foundation of China [grant number 41375064 and41675086]the National Key Technology Research and Development Program of the Ministry of Science and Technology of China [grant number 2015BAC03B03]
文摘This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.
文摘The technique of aerial photography has been used in the surveying and Mapping for more than fifty years. Along with the development of space technolongy, the satellite images are more and more widely applied to solve the survey problems. Recent years, the surveying and mapping community has conducted more deeply investigation into the remote sensing and carried out extensive applications.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2008AA12A216)
文摘According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.
文摘为提高航测数据自动成图效果,提出基于地理信息系统软件(Map Geographic Information System,MapGIS)的无人机航测数据自动成图方法。应用MapGIS技术构建航测数字化体系,采集无人机航测数据,并基于数据质量控制原则校正数据,根据采集结果将地形图进行数字线划图处理,实现无人机航测数据自动成图。实验结果表明,设计方法在实际应用过程中效果更佳。提高无人机航测数据质量的分析和控制效果,保证无人机航测数据自动成图效果。
基金supported in part by the National Natural Science Foundation of China under Grant U2013201in part by the Key R & D projects (Social Development) in Jiangsu Province of China under Grant BE2020704
文摘This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight.