Stem cells (SCs), the undifferentiated biological cells, have the infinite capacity to self-renew and the pluripotent ability to differentiate. SCs and their derived products offer great promise for biomedical applica...Stem cells (SCs), the undifferentiated biological cells, have the infinite capacity to self-renew and the pluripotent ability to differentiate. SCs and their derived products offer great promise for biomedical applications such as cell therapy, tissue engineering, regenerative medicine and drug screening. However, the clinical applications of SCs require a large amount of SCs with high quality and the number of SCs from their tissue resources is very limited. Large-scale expansion is needed to generate homogeneous SCs with good biological characteristics for clinical application. This necessitates a bioreactor system to provide controllable and stable conditions for stem cell (SC) culture. Traditional methods of bioreactor for maintenance and expansion of cells rely on two-dimensional (2-D) culture techniques, leading to loss self-renewal ability and differentiation capacity upon long-term culture. New approaches for SC expansion with bioreactor employ three-dimensional (3-D) cell growth to mimic their environment in vivo. In this review, we summarize the application of bioreactors in SC culture.展开更多
文摘Stem cells (SCs), the undifferentiated biological cells, have the infinite capacity to self-renew and the pluripotent ability to differentiate. SCs and their derived products offer great promise for biomedical applications such as cell therapy, tissue engineering, regenerative medicine and drug screening. However, the clinical applications of SCs require a large amount of SCs with high quality and the number of SCs from their tissue resources is very limited. Large-scale expansion is needed to generate homogeneous SCs with good biological characteristics for clinical application. This necessitates a bioreactor system to provide controllable and stable conditions for stem cell (SC) culture. Traditional methods of bioreactor for maintenance and expansion of cells rely on two-dimensional (2-D) culture techniques, leading to loss self-renewal ability and differentiation capacity upon long-term culture. New approaches for SC expansion with bioreactor employ three-dimensional (3-D) cell growth to mimic their environment in vivo. In this review, we summarize the application of bioreactors in SC culture.