Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat...Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.展开更多
Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoir...Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoirs of the Da'anzhai Formation in the Longgang area of the Sichuan Basin, based on petrophysical experiments and logging response characteristics, we investigated the storage properties of matrix pores and the characteristics of fracture development to establish a method for the characterization of effectiveness of tight reservoirs. Mercury injection and nuclear magnetic resonance (NMR) experiments show that the conventional relationship between porosity and permeability cannot fully reflect the fluid flow behavior in tight matrix pores. Under reservoir conditions, the tight reservoirs still possess certain storage space and permeability, which are controlled by the characteristic structures of the matrix porosity. The degree of fracture development is crucial to the productivity and quality of tight reservoirs. By combining the fracture development similarity of the same type of reservoirs and the fracture development heterogeneity in the same block, a three-level classification method of fracture development was established on the basis of fracture porosity distribution and its cumulative features. According to the actual production data, based on the effectiveness analysis of the matrix pores and fast inversion of fracture parameters from dual laterolog data, we divided the effective reservoirs into three classes: Class I with developed fractures and pores, and high-intermediate productivity; Class II with moderately developed fractures and pores or of fractured type, and intermediate-low productivity; Class III with poorly developed fractures and matrix pores, and extremely low productivity. Accordingly log classification standards were set up. Production data shows that the classification of effective reservoirs is highly consistent with the reservoir productivity level, providing a new approach for the effectiveness evaluation of tight reservoirs.展开更多
Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introdu...Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature.展开更多
Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of ...Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure.展开更多
The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin ...The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin factors. The exact solutions for wellbore pressure and the production rate obtained from layer j for a well production at a constant rate from a radial drainage area with infinite and constant pressure and no flow outer boundary condition were expressed in terms of ordinary Bessel functions. These solutions were computed numerically by the Crump's numerical inversion method and the behavior of systems was studied as a function of various reservoir parameters. The modei was compared with the real wellbore radii modei. The new modei is numerically stable when the skin factor is positive and negative, but the real wellbore radii modei is numerically stable only when the skin factor is positive.展开更多
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Boh...By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Bohai Sea are examined comprehensively.The study shows that:KL6-1 oilfield is a monolithic,high-quality,large-scale Neogene lithologic oilfield featuring shallow reservoir depth,high productivity,concentrated oil-bearing intervals,large oil-bearing area,and high reserve abundance;hydrocarbon source supply from two directions provides a sufficient material basis for the formation of large oil field;two types of"inherited structural ridge"developed under the effect of block rotation,late active faults formed by Neotectonic movement,and widely distributed contiguous sand bodies provide an efficient oil and gas transportation system for the large-scale accumulation of oil and gas;contiguous channel and lacustrine lowstand system sand bodies developed in low accommodation condition provide the basic condition for the formation of large-scale lithologic traps;deep formations structural ridge,faults(dominant migration pathways)and large-scale superimposed contiguous sand bodies constitute a"vine type"oil and gas migration and accumulation system in the Laibei Low Uplift,which is conducive to the formation of large-scale and high-abundance lithologic reservoir in this area.The successful discovery of KL6-1,100 million ton reserve order lithologic oil field,has revealed the exploration potential of Neogene large lithologic reservoirs in Bohai Sea,expanded the exploration field,and also has certain reference significance for the exploration of large lithologic reservoirs in similar areas.展开更多
The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data sh...The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.展开更多
The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. Th...The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. The following aspects are reviewed: The stability of large-scale horizontal motion in the atmosphere accords with the common inertial stability criterion when the effect of Rossby parameter is not considered (Yang, 1983), and that, on the other hand, the motion will bifurcate two times with the variation of absolute vorticity of basic Zephyr flow at the initial position under the effect of Rossby parameter. Furthermore, in the inertial stable region, if the effect of geostrophic deviation at the initial position is considered, the motion will not only bifurcate but also generate a catastrophe.展开更多
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well d...Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.展开更多
Three large-scale episodes of volcanic activity occurred during the Tertiary in the Xihu Depression, located in the East China Sea. Intermediate-felsic magmas intruded along faults and the associated hydrothermal flui...Three large-scale episodes of volcanic activity occurred during the Tertiary in the Xihu Depression, located in the East China Sea. Intermediate-felsic magmas intruded along faults and the associated hydrothermal fluids resulted in the hydrothermal alteration of the clastic country rock. To better describe reservoir characteristics, reservoir samples were subjected to the following investigations: thin section examination, scanning electron microscope-energy dispersive spectrometer analysis(SEM–EDS), fluid inclusion homogenization temperature tests, vitrinite reflectance measurements, and X-ray di raction. The results of this study provide evidence of the following hydrothermal alteration phenomena: brittle fracturing, clastic particle alteration, precipitation of unique hydrothermal minerals(celestite, zircon, apatite, barite, and cerous phosphate). The presence of abnormally high temperatures is indicated by fluid inclusion analysis, the precipitation of high-temperature authigenic minerals such as quartz, illite alteration, and anomalous vitrinite reflectance. Two aspects related to hydrothermal effects on reservoir properties have been investigated in this study:(1) Deep magmatic hydrothermal fluids carry large amounts of dissolved carbon dioxide and sulfur dioxide gas. These fluids percolate into the country rocks along fault zones, resulting in dissolution within the sandstone reservoirs and the development of significant secondary porosity.(2) Magma intrusions increase the temperature of the surrounding rocks and accelerate the thermal evolution of hydrocarbon source rocks. This results in the release of large amounts of organic acids and carbon dioxide, leading the dissolution of the aluminosilicate minerals and volcanic fragments in the reservoirs, and the generation of significant secondary porosity.展开更多
Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing ...Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas- forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using "late-stage reservoir formation effect" to replace the "late-stage reservoir formation" concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect.展开更多
The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasona...The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasonal discharge of the middle and lower reaches were analyzed considering the mean and dispersion of the seasonal discharge. The Lepage test, which is a nonparametric, two-sample test for detecting location and dispersion, was used to measure the significance of difference between the pre-dam and post-dam seasonal discharge. The results show that the reservoirs' effects on the seasonal discharge varied with the season. In the middle reaches of the river, the summer and autumn discharge decreased significantly and their inter-annual variabilities also decreased significantly. The summer and autumn precipitation over the Irtysh River Basin changed little before and after the operation of the reservoir, which indicates that the discharge changes mainly due to water storage of the reservoirs. The reservoirs store water in summer and autumn and store more water in a wet year, which leads to the reduction of the mean and dispersion of the summer and autumn discharge. The winter discharge increased significantly because the reservoirs released water for power generation. The spring discharge changed slightly. In the lower reaches, only the winter discharge increased significantly, and the other seasonal discharge changed slightly. The reservoirs' effects on the seasonal discharge are more significant in the middle reaches than in the lower reaches.展开更多
With the development of the Tazhong No. 1 carbonate gas condensate reservoir in China, it has become more and more important to study the characteristics of gas condensate well deliverability. A single-well radial sim...With the development of the Tazhong No. 1 carbonate gas condensate reservoir in China, it has become more and more important to study the characteristics of gas condensate well deliverability. A single-well radial simulator for dual-permeability reservoirs was established to study the influences of fluid properties, permeability, and pressure drawdown on well deliverability with and without the capillary number effect. The simulation shows that well deliverability basically maintains its initial value and is not affected by the capillary number when the formation pressure is higher than dew-point pressure. However, well deliverability drops rapidly when the formation pressure is lower than dew-point pressure. Even if the condensate dropout is very low, well deliverability without the capillary number effect reduces to 50 percent of its initial value when reservoir pressure declines to 95 percent of dew-point pressure, but well deliverability is significantly improved if the capillary number effect exists. The capillary number effect is most significant when reservoir pressure is just lower than dew point pressure, then the effect decreases; the reduction of well deliverability is mainly caused by the reduction of gas relative permeability of the matrix system near the wellbore.展开更多
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r...To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.展开更多
Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation i...Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.展开更多
Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher iden...Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.展开更多
The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake...The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake sediment,especially in dry and cold areas with a scarce plant cover in the Qinghai-Tibet Plateau.Hence,the discussion of influence factors of LREs is crucial.This paper selected 15 lakes(17 sediment and 3 plant samples)in the Qinghai-Tibet Plateau to examine the distribution characteristics of the modern LREs and their main influencing factors.In our study area,14 lakes were all affected by the LREs.The minimum 14C year is 5900 a BP towards the deep water area,whereas the maximum 14C year is up to 7185 a BP in the margins of Lake Heihai.The maximum 14C year is up to 7750 a BP,and the minimum 14C year is present-day carbon in the 15 lakes.One further study indicated that the LRE differences in individual lake are mostly owing to the contribution of exogenous carbonate.The results displayed that the LREs tended to increase with the increase of the salinity,moreover,the LREs of saltwater lakes or salt lakes were significantly larger than freshwater lakes due to the possible supply of old total dissolved inorganic carbon with a long residence time in the lakes.Moreover,the contribution of calcite played a significant role on the LREs.Additionally,the LREs differences are affected by the source of organic matter.The lake with groundwater supply shows large LRE due to likely being influenced by crustal and ancient CO_(2) uprising.展开更多
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were...Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.展开更多
Using theoretical analysis, the single-phase gas seepage mathematical model influenced by slippage effects was established. The results show that the pressure of producing wells attenuates more violently than the well...Using theoretical analysis, the single-phase gas seepage mathematical model influenced by slippage effects was established. The results show that the pressure of producing wells attenuates more violently than the wells without slippage effects. The decay rate of reservoir pressure is more violent as the Klinkenherg factor increases. The gas prediction output gradually increases as the Klinenberg factor increases when considering gas slippage effects. Through specific examples, analyzed the law of stope pore pressure and gas output forecast changing in a hypotonic reservoir with slippage effects. The results have great theoretical significance in the study of the law of coal-bed methane migration in hypotonic reservoirs and for the exploitation of coal-bed methane.展开更多
基金Supported by the National Science and Technology Major Project(2016ZX05003-002)Scientific Research Project of Petro China Company Limited(2016E-0601)
文摘Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.
基金co-funded by the National Natural Science Foundation of China (No.41174009)National Major Science & Technology Projects of China (Nos.2011ZX05020,2011ZX05035,2011ZX05009,2011ZX05007)
文摘Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoirs of the Da'anzhai Formation in the Longgang area of the Sichuan Basin, based on petrophysical experiments and logging response characteristics, we investigated the storage properties of matrix pores and the characteristics of fracture development to establish a method for the characterization of effectiveness of tight reservoirs. Mercury injection and nuclear magnetic resonance (NMR) experiments show that the conventional relationship between porosity and permeability cannot fully reflect the fluid flow behavior in tight matrix pores. Under reservoir conditions, the tight reservoirs still possess certain storage space and permeability, which are controlled by the characteristic structures of the matrix porosity. The degree of fracture development is crucial to the productivity and quality of tight reservoirs. By combining the fracture development similarity of the same type of reservoirs and the fracture development heterogeneity in the same block, a three-level classification method of fracture development was established on the basis of fracture porosity distribution and its cumulative features. According to the actual production data, based on the effectiveness analysis of the matrix pores and fast inversion of fracture parameters from dual laterolog data, we divided the effective reservoirs into three classes: Class I with developed fractures and pores, and high-intermediate productivity; Class II with moderately developed fractures and pores or of fractured type, and intermediate-low productivity; Class III with poorly developed fractures and matrix pores, and extremely low productivity. Accordingly log classification standards were set up. Production data shows that the classification of effective reservoirs is highly consistent with the reservoir productivity level, providing a new approach for the effectiveness evaluation of tight reservoirs.
基金financially supported by the International Science&Technology Cooperation Program of China(Grant No.2012DFA60760)
文摘Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Project of China(Grant Nos.2017ZX05013-001 and 2017ZX05069-003).
文摘Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure.
基金National Natural Science Foundation of China(No.50206016)Special Funds for Major State Basic Research Program of China(973 Program,No.1999022308)
文摘The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin factors. The exact solutions for wellbore pressure and the production rate obtained from layer j for a well production at a constant rate from a radial drainage area with infinite and constant pressure and no flow outer boundary condition were expressed in terms of ordinary Bessel functions. These solutions were computed numerically by the Crump's numerical inversion method and the behavior of systems was studied as a function of various reservoir parameters. The modei was compared with the real wellbore radii modei. The new modei is numerically stable when the skin factor is positive and negative, but the real wellbore radii modei is numerically stable only when the skin factor is positive.
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003)。
文摘By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Bohai Sea are examined comprehensively.The study shows that:KL6-1 oilfield is a monolithic,high-quality,large-scale Neogene lithologic oilfield featuring shallow reservoir depth,high productivity,concentrated oil-bearing intervals,large oil-bearing area,and high reserve abundance;hydrocarbon source supply from two directions provides a sufficient material basis for the formation of large oil field;two types of"inherited structural ridge"developed under the effect of block rotation,late active faults formed by Neotectonic movement,and widely distributed contiguous sand bodies provide an efficient oil and gas transportation system for the large-scale accumulation of oil and gas;contiguous channel and lacustrine lowstand system sand bodies developed in low accommodation condition provide the basic condition for the formation of large-scale lithologic traps;deep formations structural ridge,faults(dominant migration pathways)and large-scale superimposed contiguous sand bodies constitute a"vine type"oil and gas migration and accumulation system in the Laibei Low Uplift,which is conducive to the formation of large-scale and high-abundance lithologic reservoir in this area.The successful discovery of KL6-1,100 million ton reserve order lithologic oil field,has revealed the exploration potential of Neogene large lithologic reservoirs in Bohai Sea,expanded the exploration field,and also has certain reference significance for the exploration of large lithologic reservoirs in similar areas.
基金This research was supported by the U.S. National Science Foundation Grants ATM-8709410 and ATM-8714674.
文摘The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.
文摘The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. The following aspects are reviewed: The stability of large-scale horizontal motion in the atmosphere accords with the common inertial stability criterion when the effect of Rossby parameter is not considered (Yang, 1983), and that, on the other hand, the motion will bifurcate two times with the variation of absolute vorticity of basic Zephyr flow at the initial position under the effect of Rossby parameter. Furthermore, in the inertial stable region, if the effect of geostrophic deviation at the initial position is considered, the motion will not only bifurcate but also generate a catastrophe.
文摘Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.
基金funded by the National Natural Science Foundation of China(Grant No.41502135)
文摘Three large-scale episodes of volcanic activity occurred during the Tertiary in the Xihu Depression, located in the East China Sea. Intermediate-felsic magmas intruded along faults and the associated hydrothermal fluids resulted in the hydrothermal alteration of the clastic country rock. To better describe reservoir characteristics, reservoir samples were subjected to the following investigations: thin section examination, scanning electron microscope-energy dispersive spectrometer analysis(SEM–EDS), fluid inclusion homogenization temperature tests, vitrinite reflectance measurements, and X-ray di raction. The results of this study provide evidence of the following hydrothermal alteration phenomena: brittle fracturing, clastic particle alteration, precipitation of unique hydrothermal minerals(celestite, zircon, apatite, barite, and cerous phosphate). The presence of abnormally high temperatures is indicated by fluid inclusion analysis, the precipitation of high-temperature authigenic minerals such as quartz, illite alteration, and anomalous vitrinite reflectance. Two aspects related to hydrothermal effects on reservoir properties have been investigated in this study:(1) Deep magmatic hydrothermal fluids carry large amounts of dissolved carbon dioxide and sulfur dioxide gas. These fluids percolate into the country rocks along fault zones, resulting in dissolution within the sandstone reservoirs and the development of significant secondary porosity.(2) Magma intrusions increase the temperature of the surrounding rocks and accelerate the thermal evolution of hydrocarbon source rocks. This results in the release of large amounts of organic acids and carbon dioxide, leading the dissolution of the aluminosilicate minerals and volcanic fragments in the reservoirs, and the generation of significant secondary porosity.
基金State Key Basic Research "973" Program (2006CB202308) for funding this research
文摘Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas- forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using "late-stage reservoir formation effect" to replace the "late-stage reservoir formation" concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2013/B13020312)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes,for the People’s Republic of China(Grant No.201001052)the Innovative Project of Scientific Research for Postgraduates in Ordinary Universities of Jiangsu Province(Grant No.CXZZ11_0433)
文摘The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasonal discharge of the middle and lower reaches were analyzed considering the mean and dispersion of the seasonal discharge. The Lepage test, which is a nonparametric, two-sample test for detecting location and dispersion, was used to measure the significance of difference between the pre-dam and post-dam seasonal discharge. The results show that the reservoirs' effects on the seasonal discharge varied with the season. In the middle reaches of the river, the summer and autumn discharge decreased significantly and their inter-annual variabilities also decreased significantly. The summer and autumn precipitation over the Irtysh River Basin changed little before and after the operation of the reservoir, which indicates that the discharge changes mainly due to water storage of the reservoirs. The reservoirs store water in summer and autumn and store more water in a wet year, which leads to the reduction of the mean and dispersion of the summer and autumn discharge. The winter discharge increased significantly because the reservoirs released water for power generation. The spring discharge changed slightly. In the lower reaches, only the winter discharge increased significantly, and the other seasonal discharge changed slightly. The reservoirs' effects on the seasonal discharge are more significant in the middle reaches than in the lower reaches.
基金Project "973",a national fundamental research development program,for its financial support
文摘With the development of the Tazhong No. 1 carbonate gas condensate reservoir in China, it has become more and more important to study the characteristics of gas condensate well deliverability. A single-well radial simulator for dual-permeability reservoirs was established to study the influences of fluid properties, permeability, and pressure drawdown on well deliverability with and without the capillary number effect. The simulation shows that well deliverability basically maintains its initial value and is not affected by the capillary number when the formation pressure is higher than dew-point pressure. However, well deliverability drops rapidly when the formation pressure is lower than dew-point pressure. Even if the condensate dropout is very low, well deliverability without the capillary number effect reduces to 50 percent of its initial value when reservoir pressure declines to 95 percent of dew-point pressure, but well deliverability is significantly improved if the capillary number effect exists. The capillary number effect is most significant when reservoir pressure is just lower than dew point pressure, then the effect decreases; the reduction of well deliverability is mainly caused by the reduction of gas relative permeability of the matrix system near the wellbore.
基金Supported by China National Science and Technology Major Project(2016ZX05025-003-010) and (2016ZX05010-005).
文摘To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.
基金funded by the National Natural Science Foundation of China[grant numbers 41474001,41830110]the Fundamental Research Funds for Central Universities[grant number 2018B58214]+2 种基金the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation[grant number 13-01-05]the Major Scientific and Technological Projects of Jiangxi Water Resources Department[grant number kt201322]the Natural Science Foundation of Jiangsu Province,China[grant number BK20170869]。
文摘Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.
基金supported in part by the National Natural Science Foundation of China(61762093)the 17th Batch of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province
文摘Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.
基金The work was supported by a grant from Research Fund for the Doctoral Program of Higher Education of East China University of Technology(DHBK2019012)Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology(DLLJ202018)Key Research and Development Program of Jiangxi Province(20181BBG70037).
文摘The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake sediment,especially in dry and cold areas with a scarce plant cover in the Qinghai-Tibet Plateau.Hence,the discussion of influence factors of LREs is crucial.This paper selected 15 lakes(17 sediment and 3 plant samples)in the Qinghai-Tibet Plateau to examine the distribution characteristics of the modern LREs and their main influencing factors.In our study area,14 lakes were all affected by the LREs.The minimum 14C year is 5900 a BP towards the deep water area,whereas the maximum 14C year is up to 7185 a BP in the margins of Lake Heihai.The maximum 14C year is up to 7750 a BP,and the minimum 14C year is present-day carbon in the 15 lakes.One further study indicated that the LRE differences in individual lake are mostly owing to the contribution of exogenous carbonate.The results displayed that the LREs tended to increase with the increase of the salinity,moreover,the LREs of saltwater lakes or salt lakes were significantly larger than freshwater lakes due to the possible supply of old total dissolved inorganic carbon with a long residence time in the lakes.Moreover,the contribution of calcite played a significant role on the LREs.Additionally,the LREs differences are affected by the source of organic matter.The lake with groundwater supply shows large LRE due to likely being influenced by crustal and ancient CO_(2) uprising.
基金Supported by Open Fund(PLC20190203)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)the Natural Science Foundation of Shaanxi Province,China(2006Z07,2010JM5003)Youth Science and Technology Innovation Fund Project of Xi’an Petroleum University(2012BS010)
文摘Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.
基金Supported by the Youth Program of the National Natural Science Foundation of China (51004061)
文摘Using theoretical analysis, the single-phase gas seepage mathematical model influenced by slippage effects was established. The results show that the pressure of producing wells attenuates more violently than the wells without slippage effects. The decay rate of reservoir pressure is more violent as the Klinkenherg factor increases. The gas prediction output gradually increases as the Klinenberg factor increases when considering gas slippage effects. Through specific examples, analyzed the law of stope pore pressure and gas output forecast changing in a hypotonic reservoir with slippage effects. The results have great theoretical significance in the study of the law of coal-bed methane migration in hypotonic reservoirs and for the exploitation of coal-bed methane.