Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analy...Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analysis of the potential value of livestock manure, the suggestion and strategy for utilization of livestock manure resources were proposed based on the actual conditions in Yangzhou city.展开更多
The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and deve...The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance fo...Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited.In this study,we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats.We explored the impacts of wind farms on land surface temperature(LST)and vegetation net primary productivity(NPP)between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas.The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020.Spatially,wind farms are mainly clustered in three aggregation areas in the center.Further,wind farms increased nighttime LST,with a mean value of 0.23℃,but had minor impacts on the daytime LST.Moreover,wind farms caused a decline in NPP,especially over forest areas,with an average reduction of 12.37 GC/m^(2).Given the impact of wind farms on LST and NPP,we suggest that the development of wind farms should fully consider their direct and potential impacts.This study provides scientific guidance on the spatial pattern of future wind farms.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i...Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.展开更多
Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa ...Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its...Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.展开更多
We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real...Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.展开更多
基金Cultivated Land Quality Monitoring Special Funds in Jiangsu Province,Jiangsu Agricultural Three Engineerings(sx(2010)229)Yangzhou Agricultural Science and Technology Project(YZ2010059)Aid
文摘Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analysis of the potential value of livestock manure, the suggestion and strategy for utilization of livestock manure resources were proposed based on the actual conditions in Yangzhou city.
基金Supported by the Fund Program of Jiangsu Academy of Agricultural Sciences(6111689)the Planning Program of"the Twelfth Five-year-plan"in National Science and Technology for the Rural Developme+nt in China(2015BAD12B04-1.2)the Fund for Independent Innovation of Agricultural Science and Technology of Jiangsu Province[CX(16)1006]~~
文摘The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金supported by the National Key Research and Develop-ment Program of China(Grant No.2021YFC3201201)the National Natural Science Foundation of China(Grant No.32071582)+2 种基金JCS consid-ers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere(ECONOVO)funded by Danish National Research Founda-tion(Grant No.DNRF173 to JCS)his Investigator project“Biodi-versity Dynamics in a Changing World”,funded by VILLUM FONDEN(Grant No.16549).
文摘Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited.In this study,we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats.We explored the impacts of wind farms on land surface temperature(LST)and vegetation net primary productivity(NPP)between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas.The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020.Spatially,wind farms are mainly clustered in three aggregation areas in the center.Further,wind farms increased nighttime LST,with a mean value of 0.23℃,but had minor impacts on the daytime LST.Moreover,wind farms caused a decline in NPP,especially over forest areas,with an average reduction of 12.37 GC/m^(2).Given the impact of wind farms on LST and NPP,we suggest that the development of wind farms should fully consider their direct and potential impacts.This study provides scientific guidance on the spatial pattern of future wind farms.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金supported by the National Natural Science Foundation of China(32172188)Science and Technology Cooperation Project of ZheJiang Province(2023SNJF058-3)。
文摘Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.
文摘Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金supported by the National Natural Science Foundation of China(52074046,52122403,51834003,and 52274073)the Graduate Research and Innovation Foundation of Chongqing(CYB22023)+2 种基金the Chongqing Talents Plan for Young Talents(cstc2022ycjh-bgzxm0035)Hunan Institute of Engineering(21RC025 and XJ2005)Hunan Province Education Department(21B0664).
文摘Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
文摘Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.